Quantenoptik - Eine Stoppuhr für Elektronenblitze
Physiker messen erstmals exakt die Dauer hochenergetischer Elektronenpulse
Rund 24 Bilder pro Sekunde reichen aus, um vor dem menschlichen Auge einen Film ablaufen zu lassen. Will man die teilweise Attosekunden-schnellen Bewegungen von Atomen oder sogar Elektronen kontinuierlich aufzeichnen, so benötigt man ein Billionenfaches an Bildern pro Sekunde. Eine Möglichkeit, solche Zeitlupen-Aufnahmen zu erstellen, bieten Elektronenpulse. Sie werden mit Hilfe von Laserlicht an Metalloberflächen erzeugt. Jeder einzelne Puls dauert nur wenige Femtosekunden und liefert Bilder von atomaren Strukturen aus dem Mikrokosmos.
Wie lange genau solche Pulse dauern, war bis jetzt schwer zu bestimmen. Doch nun hat das LAP-Team ein System entwickelt, mit dem die Dauer von hochenergetischen Elektronenpulsen (25 keV) exakt gemessen werden kann. Dazu schickten die Forscher die Elektronenpulse aus einzelnen Elektronen in Richtung einer dünnen Folie aus Aluminium. An dieser trafen die Elektronen auf einen Laserpuls, der rund 50 Femtosekunden dauerte und ungefähr im rechten Winkel zu den Elektronen auf der Folie auftraf.
Sobald das elektrische Feld des Infrarot-Laserpulses die Elektronen erfasste, nahmen diese entweder Energie auf oder gaben sie ab, während sie, geradeaus durch die Alufolie, auf einen Detektor zuflogen. Entscheidend für Aufnahme oder Abgabe von Energie ist der Zeitpunkt, an dem die Elektronen das sich stetig wandelnde elektromagnetische Feld des Infrarotpulses verlassen. Aus der Energieverteilung der anschließend auf den Detektor auftreffenden Elektronen konnten die Forscher dann ausrechnen, wie lange der ursprüngliche Elektronenpuls vor der Interaktion mit dem Lichtfeld war.
Hochenergetische Elektronenpulse dringen - im Gegensatz zu Laser-Lichtblitzen aus Photonen - tief in die atomaren Bestandteile von Materie ein. Sie sind damit in der Lage, nicht nur die zeitlichen Veränderungen, sondern auch die räumliche Anordnug der Atome zu vermessen. Untersuchungen der Elektronenbewegungen in Atomen oder Molekülen mit Elektronenpulsen nennt man Elektronendiffraktometrie. Mit dieser Technik lassen sich die Positionen und Bewegungen von Atomen und Ladungen räumlich und auch zeitlich (also in der vierten Dimension) verfolgen. Aktuell dauern solche Elektronenpulse mehrere 100 Femtosekunden. Jedoch können im Prinzip für die Elektronendiffraktometrie auch Attosekundenblitze erzeugt werden. Diese noch 1000-Mal kürzeren Elektronenblitze können ebenfalls mit Hilfe der neuen Methode gemessen werden. Mit der neuen Stoppuhr aus Licht steht ihrer Erzeugung nicht mehr viel im Weg.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Diese Produkte könnten Sie interessieren
DynaPro NanoStar II von Wyatt Technology
NanoStar II: DLS und SLS mit Touch-Bedienung
Größe, Partikelkonzentration und mehr für Proteine, Viren und andere Biomoleküle
Eclipse von Wyatt Technology
FFF-MALS System zur Trennung und Charakterisierung von Makromolekülen und Nanopartikeln
Neuestes FFF-MALS-System entwickelt für höchste Benutzerfreundlichkeit, Robustheit und Datenqualität
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für die chemische Industrie, Analytik, Labor und Prozess bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.