Flüssige Wassermoleküle sind von Natur aus asymmetrisch
Neue Einblicke in die Bindungen zwischen Wassermolekülen
Warum dies so ist, ist schon lange Gegenstand wissenschaftlicher Untersuchungen. Forschende am Max-Planck-Institut für Polymerforschung haben nun einen weiteren Baustein entdeckt, der Einblicke in das besondere Verhalten von Wasser gibt.
Viele der besonderen Eigenschaften von Wasser beruhen auf den speziellen Wechselwirkungen zwischen den einzelnen Wassermolekülen – den sogenannten Wasserstoffbrückenbindungen. Jedes Wassermolekül kann zwei dieser Bindungen ausbilden - eine von jedem Wasserstoffatom - und zwei von anderen, benachbarten Molekülen aufnehmen. Anders als in Eis, werden diese Bindungen in flüssigem Wasser im Schnitt 1 Billion mal pro Sekunde gebrochen und wieder neu gebildet, so dass sich die Wassermoleküle dichter packen lassen und sich sehr schnell bewegen können. Durch die schnelle Bewegung der Wassermoleküle in der Flüssigkeit könnte man vermuten, dass die Stärke der einzelnen Bindungen zu seinen Nachbarn rein zufällig ist.
Das Team um Gruppenleiter Johannes Hunger hat jedoch festgestellt, dass die Wasserstoffbrücken nicht einfach zufällig ausgebildet werden, sondern je zwei Bindungen eines Moleküls unterschiedlich stark sind: Ist eine Bindung sehr stark – d. h. das erste Nachbar-Wassermolekül sehr nah – ist die zweite Wasserstoffbrücke schwach – d. h. das zweite Nachbar-Wassermolekül weiter entfernt.
Hierdurch ergibt sich in der eigentlich molekular ungeordneten Flüssigkeit eine Struktur: Hangelt man sich von einem Wassermolekül weiter zum nächsten und zum übernächsten, gibt es immer ein stark gebundenes Nachbarmolekül. Dadurch können in der Flüssigkeit Strukturen wie z. B. Ringe oder Ketten aus Wassermolekülen entstehen. Die Struktur von flüssigem Wasser ist somit nicht nur eine zufällige Anordnung von einzelnen Wassermolekülen sondern folgt bestimmten Regeln.
Die Wissenschaftler*innen haben, um zu diesen Ergebnissen zu gelangen, Wasser mit einem Lösemittel verdünnt, so dass sie einzelne, isolierte Wassermoleküle untersuchen konnten. Mit Hilfe von Lasern haben sie einzelne Atome der Wassermoleküle zum Schwingen gebracht und untersucht, wie sich die einzelnen Schwingungen gegenseitig beeinflussen. Somit konnten sie die Stärke einzelner Wasserstoffbrückenbindungen und gleichzeitig die Stärke der benachbarten Bindung vermessen.
Die nun im Journal „Nature Communications“ veröffentlichte Studie trägt dazu bei, in Zukunft die Anomalien des Wassers auch auf molekularer Ebene umfassend zu verstehen.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für die chemische Industrie, Analytik, Labor und Prozess bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.