Neues holografisches Verfahren nutzt „bildstabilisierte Röntgenkamera“

09.01.2014 - Deutschland

Ein Team um Stefan Eisebitt hat ein neues Röntgen-Holografie-Verfahren entwickelt, das „Schnappschüsse“ von dynamischen Prozessen mit bisher unerreichter Auflösung in Aussicht stellt. Die Effizienz des neuartigen Verfahrens beruht auf einer fokussierenden Röntgenoptik, die  mit dem abzubildenden Objekt fest verbunden ist. Dadurch liefert das Verfahren zwar zunächst eine unscharfe Abbildung, diese kann im Nachhinein jedoch fokussiert werden. Gleichzeitig löst dieser Trick (nämlich die feste Verbindung zwischen Objekt und Fokussieroptik) elegant das Problem des „Verwackelns“, das auf Nanometerskala eine enorme Rolle spielt.

J. Geilhufe/HZB

Als Testobjekte nutzten die Forscher den Umriss eines Geckos, der 10.000-fach verkleinert in eine Goldfolie einstrukturiert wurde und einen Ausschnitt aus dem „Siemensstern“, der hier wie eine Muschel aussieht. Das ganze Testobjekt hat mit sechs Mikrometern Durchmesser etwa die Größe eines roten Blutkörperchens. Die kleinsten noch aufgelösten Strukturen haben eine Breite von gerade einmal 46 Nanometern.

Professor Dr. Stefan Eisebitt, der an der TU Berlin das Fachgebiet Nanometeroptik und Röntgenoptik leitet und auch am HZB forscht, erklärt: „So wie ein lichtstarkes Objektiv am Fotoapparat auch bei schwacher Beleuchtung noch scharfe Bilder ermöglicht, ermöglicht es auch hier ein optisches Element, das Röntgenlicht effizienter zu nutzen. Gleichzeitig haben wir diese Röntgenlinse fest mit dem abzubildenden Objekt gekoppelt, so dass Vibrationen keine Rolle mehr spielen und das Bild stabilisiert wird.“ Kontrastarme oder sich bewegende Nanoobjekte können damit deutlich besser abgebildet werden.

Für die Röntgen-Holografie wird „kohärentes Licht“ benötigt, bei dem die elektromagnetischen Wellen im Gleichtakt schwingen. Solches Licht produzieren Laser oder Synchrotronquellen wie BESSY II. Bei dem verwendeten holografischen Verfahren fällt ein Teil des Röntgenlichts auf das abzubildende Objekt und ein weiterer Teil durchdringt normalerweise eine Lochblende, die sich seitlich neben dem Objekt befindet: dies ist die Referenzwelle. Durch die Überlagerung beider Wellen entsteht ein Hologramm, welches von einem Detektor aufgezeichnet wird. Eine Abbildung des beleuchteten Objekts wird dann aus dem Hologramm am Computer rekonstruiert. Doch die Lochblende besitzt einen Nachteil: Um eine scharfe Abbildung zu ermöglichen, muss sie sehr klein sein, lässt dann jedoch zu wenig Licht hindurch, um auch bei sehr kontrastarmen Objekten  ein gutes Bild zu erzeugen – ein Dilemma.

Mehr Licht durch spezielle Optik

Eine Lösung fanden die Physiker um Eisebitt mit einer speziellen Optik: einer Fresnel-Zonenplatte. Diese wird – als Ersatz für die Lochblende – auf der Objektebene selbst platziert. Dadurch gelingt es, die Referenzwelle deutlich zu verstärken. Allerdings liegt der Fokus der Optik (der einer idealen Punkt-förmigen Lochblende entspräche) eben nicht auf der Objektebene, so dass die Abbildung unscharf wird.  Im Gegensatz zu einer Fotografie lässt sich jedoch diese Unschärfe aus einem Hologramm jedoch rechnerisch präzise korrigieren. Durch die effizientere Optik können Belichtungszeiten drastisch reduziert werden. So eignet sich die Methode nun besser um Schnappschüsse von ultraschnellen Prozessen zu ermöglichen.

Gecko-Umriss als Testobjekt

Doktorand Jan Geilhufe hat diese Idee ausgearbeitet und umgesetzt, und er war es auch, der das Bild des Geckos als filigranes Testobjekt beigesteuert hat. Dessen Umriss wurde zehntausendfach verkleinert in eine Goldfolie einstrukturiert. „Uns war es wichtig, ein originelles Testobjekt zu finden um zu zeigen wie gut die Methode funktioniert“, sagt Geilhufe. Die Muschel im Zentrum des Testobjekts zeigt dabei einen Ausschnitt aus einem sogenannten Siemensstern, einer Struktur zur Auflösungsbestimmung. Ähnlich wie am Schwanz des Geckos kann man an den zulaufenden Strahlen des Siemenssterns  messen, wie gut unterschiedliche Strukturbreiten im Bild dargestellt werden. Das ganze Testobjekt hat mit sechs Mikrometern Durchmesser etwa die Größe eines roten Blutkörperchens. Die kleinsten noch aufgelösten Strukturen haben eine Breite von gerade einmal 46 Nanometern.

Röntgenkamera mit Bildstabilisator

Das altbekannte Problem des „Verwackelns“ durch Vibrationen des Bildgegenstandes relativ zur Optik wird umso dramatischer, je höher die Auflösung des optischen Systems ist. „In der Erforschung von Methoden zur hochauflösenden Röntgenbildgebung strebt man derzeit nach Auflösung von unter zehn Nanometern. Das sind weniger als hundert Atomabstände, daher machen sich selbst kleinste Schwingungen bemerkbar. Da reicht es schon, wenn einen Kilometer weiter die Straßenbahn vorbeifährt“, sagt Geilhufe. „Wir haben aber mit unserem Verfahren die Schwingungen des Objekts mit den Schwingungen der Referenzoptik fest gekoppelt, so dass die Linse exakt wie das Objekt schwingt. Wir haben sozusagen eine Röntgenkamera mit Bildstabilisator gebaut.“

„Die Kombination der weltweit anerkannten Expertise des HZB in der Herstellung von Fresnel-Zonenplatten mit den flexiblen Strukturierungsmöglichkeiten der „Nano-Werkbank“ an der TU Berlin hat diesen Fortschritt möglich gemacht“, betont Eisebitt.

Neue Methode wird an BESSY II angeboten

Heute wird die Arbeit in Nature Communications veröffentlicht, dann könnte die neue Methode von vielen Forschungsgruppen genutzt werden. Denn bessere räumliche und zeitliche Auflösungen versprechen neue Einblicke in schnelle Prozesse, zum Beispiel in schnelle magnetische Schaltvorgänge, die für die Datenspeicherung von Interesse sind. „Wir hoffen, dass unser Verfahren für viele Forschungsfragen nützlich ist und dazu beiträgt, die Welt auf der Skala weniger Nanometer besser zu verstehen“, sagt Stefan Eisebitt. Zukünftig wollen Eisebitt und sein Team ihre neue holografische Technik an BESSY II  am so genannten RICXS-Aufbau auch Messgästen aus aller Welt anbieten.

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

DynaPro NanoStar II

DynaPro NanoStar II von Wyatt Technology

NanoStar II: DLS und SLS mit Touch-Bedienung

Größe, Partikelkonzentration und mehr für Proteine, Viren und andere Biomoleküle

Eclipse

Eclipse von Wyatt Technology

FFF-MALS System zur Trennung und Charakterisierung von Makromolekülen und Nanopartikeln

Neuestes FFF-MALS-System entwickelt für höchste Benutzerfreundlichkeit, Robustheit und Datenqualität

Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...