Kristalluntersuchung in 3D
Photonen-Energie als dritte Dimension der kristallographischen Texturanalyse
© Wiley-VCH
Ob Mineral, Biomineral oder anorganischer Werkstoff – die Anordnung der einzelnen Kristallite hat einen großen Einfluss auf dessen Eigenschaften. Die Textur einer Probe lässt sich durch Röntgenbeugung bestimmen. Röntgenstrahlen werden an der Elektronenhülle der Atome abgelenkt, die von den einzelnen Atomen ausgehenden Wellen interferieren und in Abhängigkeit von Abstand und Anordnung der Atome ergeben sich Beugungsmuster, die von einem Detektor aufgezeichnet werden und Rückschlüsse auf die Anordnung der Kristallite zulassen. Diese konventionelle Analysemethode liefert aber nur eine Projektion, also zweidimensionale Daten. Dreidimensional räumlich aufgelöste Informationen erfordern die Drehung der Probe im Strahl. Dabei ändert sich jedoch das beleuchtete Probenvolumen, die Signale verschmieren. Komplexe Strukturen lassen sich so schwer untersuchen.
Dieses Hindernis hat ein Team aus Forschern von der Universität für Bodenkultur (BOKU) in Wien, der Universität Gent, (Belgien), dem Deutschen Elektronensynchrotron in Hamburg, dem Europäischen Synchrotron ESRF in Grenoble, der Universität Liverpool sowie der Niederländischen Wissenschaftsorganisation NWO jetzt überwunden. Schlüssel zum Erfolg war, die Probe mit „weißem“ Röntgenlicht aus einem Synchrotron zu bestrahlen, das heißt nicht nur mit einer Energie, sondern mit einem ganzen Energiespektrum. Das liefert zusätzliche Informationen, da jede Energie anders gebeugt wird. Mit einer speziellen Kamera ließ sich das Beugungsmuster nach Energie getrennt aufzeichnen und so das jeweilige Spektrum in jedem einzelnen Pixel auflösen. Rechenverfahren ermöglichen, die Röntgenphotonenenergie in die fehlende dritte Dimension im Raum zu übersetzen.
Am Beispiel von Kohlenstofffasern, die eine gut bekannte Fasertextur haben, belegten die Forscher um Helga Lichtenegger die Leistungsfähigkeit ihrer Methode. Zudem untersuchten sie die Schale des Amerikanischen Hummers. Sie soll aus Lagen helikal angeordneter mit amorphem Calciumkarbonat mineralisierter Chitinfasern bestehen. Senkrecht zur Chitinschicht sollen Calcit-Kriställchen angeordnet sein. Diese Annahmen konnten jetzt bestätigt und weiter präzisiert werden
„Unsere neue Methode liefert direkte 3D-Informationen mit einer einzigen Messung – ohne Vorwissen über die Probe“, so Lichtenegger. „Sie erlaubt die Texturanalyse großer Proben mit komplexen Substrukturen und eröffnet so die Möglichkeit, Textur-Änderungen in situ zu verfolgen, etwa während der Kristallisation.“
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für die chemische Industrie, Analytik, Labor und Prozess bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.