Vom Molekül zur Medizin: Neues Fachgebiet an der TU München
Um krankhafte Prozesse im Körper im Tomographen sichtbar zu machen, müssen Wissenschaftler Moleküle entwickeln, die sich am Krankheitsherd anreichern und dort Strahlen aussenden. So ist es möglich, Ort und Ausmaß der Erkrankung zu bestimmen. Diese Kenntnisse helfen dem Arzt die geeignete, individuell auf jeden einzelnen Patienten abgestimmte Therapie auszuwählen und den Therapieerfolg zu kontrollieren. Für die Entwicklung dieser molekularen Pfadfinder, sogenannte Tracer oder Radiopharmaka, müssen die Moleküldesigner nicht nur die Chemie verstehen, sondern auch die klinische Situation sehr gut kennen.
Bislang kreierten die Forscher hauptsächlich Moleküle, die sich in bereits bekannten und häufig vorkommenden biochemischen Prozessen im Körper anreichern. Da diese Prozesse in krankhaft veränderten Zellen wie beispielsweise Krebszellen besonders aktiv sind, ist ein Rückschluss auf Ort und Ausmaß der Erkrankung möglich. Allerdings sind die Ergebnisse sehr unspezifisch. Daher sind die Wissenschaftler nun dazu übergegangen nach Prozessen oder einzelnen Proteinen zu fahnden, die fast nur im Tumor und nur selten im umliegenden Gewebe vorkommen.
Haben die Wissenschaftler ein solches spezifisches Protein aufgespürt, entwickeln sie im Labor das dafür passende Radiopharmakon. Dieses wird anschließend mit einer gesundheitlich verträglichen radioaktiven Markierung versehen und in den Körper, beispielsweise eines Tumorpatienten, injiziert. Dort lagert sich das Radiopharmakon hochselektiv an die Proteine an. Mit geeigneten Tomographen, wie PET (Positronenemissionstomographie) oder SPECT (Einzelphotonenemissionstomographie), können die Nuklearmediziner anschließend die Verteilung der Radiopharmaka messen: Der Tumor und seine Metastasen werden sichtbar. Solche "Aktivitätslandkarten" können dem Strahlentherapeuten oder Chirurgen wichtige Hinweise für die optimale Therapie liefern.
Diese schnelle und präzise Entwicklung eines Radiopharmakons ist jedoch nur möglich, wenn Ärzte und Wissenschaftler Hand in Hand arbeiten. Durch die hervorragende Infrastruktur der TU München und die enge Zusammenarbeit mit den Klinikern im Rechts der Isar hofft Prof. Wester "eine Brücke schlagen zu können zwischen chemischer Grundlagenforschung und medizinischer Anwendung".
Meistgelesene News
Themen
Organisationen
Weitere News aus dem Ressort Karriere
Diese Produkte könnten Sie interessieren
Rotating Ring Disk Elektrode Rotator von C3 Prozess- und Analysentechnik
Präzise Rotation und einfacher Elektrodenwechsel - Entdecken Sie das innovative Rotator-System!
Elektrochemische Messzellen und Elektroden von C3 Prozess- und Analysentechnik
Ersetzen Sie viele Messzellen mit unserer vielseitigen Voltammetriezelle für präzise Messergebnisse
Interface 1010 von C3 Prozess- und Analysentechnik
Optimieren Sie Ihre elektrochemische Messungen für präzise Ergebnisse und vielfältige Anwendungsmöglichkeiten
Reference 620 von C3 Prozess- und Analysentechnik
Potentiostat / Galvanostat / ZRA mit maximaler Empfindlichkeit und minimalem Rauschen für wegweisende Forschung
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.