Platinreiche Schale, platinarmer Kern

Neue Katalysatorklasse für Brennstoffzellen schlägt reines Platin um Längen

25.10.2007

Wasserstoff-Brennstoffzellen gelten als Automobil-Antrieb der Zukunft, kranken bisher allerdings noch an mangelnder Konkurrenzfähigkeit. An der University of Houston (Texas, USA) hat ein Team um Peter Strasser jetzt eine neue Klasse von Elektrokatalysatoren entwickelt, die helfen könnte, die Leistung von Brennstoffzellen zu erhöhen. Die aktive Phase des Katalysators bilden Nanopartikel mit einer platinreichen Schale und einem Kern aus einer Kupfer-Cobalt-Platin-Legierung. Sie zeigt eine bisher unerreichte Aktivität bei der Reduktion von Sauerstoff.

Damit die Reaktion in Wasserstoff-Brennstoffzellen laufen kann, müssen die Elektroden katalytisch wirken. Material der Wahl für die Elektrode der Sauerstoff-Teilreaktion ist seit Jahrzehnten das Edelmetall Platin. Nun haben Strasser und sein Team ein neues Material entwickelt: Eine Legierung aus Platin, Kupfer und Cobalt, die in Form von Nanopartikeln auf Trägern aus Kohlenstoff aufgebracht ist. Die eigentliche katalytisch aktive Phase entsteht erst in situ: Wird eine zyklisch wechselnde Spannung an die Elektrode angelegt, lösen sich an der Oberfläche der Nanopartikel selektiv die weniger edlen Metallatome, vor allem Kupfer, aus der Legierung heraus. So entstehen Nanopartikel mit einem Kern aus der ursprünglichen kupferreichen Legierung und einer fast nur Platin enthaltenden Schale.

"Die sauerstoffreduzierende Aktivität unseres neuen elektrokatalytischen Nanomaterials ist bisher unerreicht - etwa vier- bis fünfmal höher als beim reinen Platin. Zudem konnten wir zeigen, wie man dieses Material in einer richtigen Brennstoffzelle in situ einsetzt und aktiviert," sagt Strasser. Die beobachtete Oberflächenzunahme der Nanopartikel reicht als Erklärung nicht aus. Strasser vermutet, dass spezielle veränderte strukturelle Charakteristika der Oberfläche eine Rolle spielen. Obwohl die Partikeloberfläche hauptsächlich aus Platin besteht, scheinen die Abstände zwischen den Platinatomen hier kürzer zu sein als bei reinem Platin. Diese Stauchung kann durch den Legierungskern stabilisiert werden, der aufgrund des Kupfers und Cobalts noch stärker verkürzte Platin-Abstände zeigt. Zudem scheint der kupferreiche Kern die elektronischen Eigenschaften der Platinschale zu beeinflussen. Theoretische Betrachtungen haben ergeben, dass der Sauerstoff so optimal an die Partikeloberfläche binden kann und sich leichter reduzieren lässt.

Originalveröffentlichung: Peter Strasser et al.; "Efficient Oxygen Reduction Fuel Cell Electrocatalysis on Voltammetrically Dealloyed Pt-Cu-Co Nanoparticles"; Angewandte Chemie 2007.

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

NANOPHOX CS

NANOPHOX CS von Sympatec

Partikelgrößenanalyse im Nanobereich: Hohe Konzentrationen problemlos analysieren

Zuverlässige Ergebnisse ohne aufwändige Probenvorbereitung

Partikelanalysatoren
DynaPro Plate Reader III

DynaPro Plate Reader III von Wyatt Technology

Screening von Biopharmazeutika und anderen Proteinen mit automatisierter dynamischer Lichtstreuung

Hochdurchsatz-DLS/SLS-Messungen von Lead Discovery bis Qualitätskontrolle

Partikelanalysatoren
Eclipse

Eclipse von Wyatt Technology

FFF-MALS System zur Trennung und Charakterisierung von Makromolekülen und Nanopartikeln

Neuestes FFF-MALS-System entwickelt für höchste Benutzerfreundlichkeit, Robustheit und Datenqualität

Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...