Bananenförmige Moleküle bilden Flüssigkeit mit überraschenden Eigenschaften

07.08.2009 - Deutschland

Unsere Hände verhalten sich zueinander wie Bild und Spiegelbild. Trotz ihrer Ähnlichkeit lassen sie sich nicht zur Deckung bringen. Diese Konstellation nennt man Chiralität - ein wichtiges Grundprinzip der Natur. Gegenstände können chiral sein, auch einzelne Moleküle. Eine internationale Forschergruppe hat nun allerdings etwas Ungewöhnliches gefunden: die Chiralität einer Flüssigkeit, die aus nicht-chiralen Molekülen besteht. "Unsere Erkenntnis widerspricht den bisherigen Erfahrungen, könnte aber von großer Bedeutung sein", sagt Prof. Dr. Carsten Tschierske von der Martin-Luther-Universität Halle-Wittenberg (MLU), Mitautor des entsprechenden Artikels im Wissenschaftsmagazin "Science".

Das Forschungsgebiet des Chemikers Carsten Tschierske berührt gleich zwei Schwerpunkte der hallschen Universität: die Bio- und die Materialwissenschaften. Seine Arbeit ist Teil des an der MLU angesiedelten Landesexzellenznetzwerks "Nanostrukturierte Materialien". Er interessiert sich vor allem für Flüssigkristalle, wie man sie heute in Laptop- und Handy-Displays findet. Besonders die Suche nach neuen Formen von Flüssigkristallen, wie den bananenförmigen, hat es ihm angetan. Diese Flüssigkristalle besitzen ganz besondere Eigenschaften.

Der Forscher kennt sich also aus mit den entsprechenden Molekülen - und doch halten sie auch für ihn Überraschungen bereit. "Wir haben aus solchen Molekülen flüssige Substanzen hergestellt, die über größere Bereiche, also Mikro- und Millimeter-Bereiche, ausgedehnte chirale Domänen entgegengesetzter Händigkeit bilden. Die Chiralität dieser Bereiche ist dabei stärker als die größte jemals bei chiralen Molekülen gefundene. Unsere Kooperationspartner in den USA konnten diese Domänen mittels Elektronenmikroskopie erstmals detailliert untersuchen und die Ursachen für dieses Phänomen aufklären." Entscheidend sei dafür die Organisation der Moleküle. "Sie liegen in einer geordneten Struktur vor, ihre einzelnen Schichten sind dabei deformiert wie Kartoffelchips." Der Effekt an sich sei nicht neu: "Nicht-chirale Moleküle, die sich im Raum so organisieren können, dass Chiralität entsteht, sind bei kristallinen Festkörpern bekannt. Ein gutes Beispiel dafür ist Quarz. Aber der gleiche Effekt in einer Flüssigkeit? Das ist etwas Besonderes."

Chiralität macht man sich heutzutage bereits häufig zunutze. "Sie ist entscheidend für Lichtpolarisatoren, die Lasertechnik, aber auch für die Wirkung von Arzneimitteln." Gedanken über mögliche Anwendungen für die neue Erkenntnis in Sachen Chiralität in Flüssigkeiten hält Tschierske zwar für spekulativ. "Wir betreiben Grundlagenforschung, bauen neue Moleküle, um zu sehen: Wie organisieren sie sich?", beschreibt der hallesche Forscher die Arbeit seines Teams. Einige Beispiele kann er aber dennoch nennen: "Wenn man die Chiralität in diesen Flüssigkeiten schalten, sozusagen Links- in Rechtshändigkeit ändern könnte, dann wäre dies von Interesse für Informationsübertragung, optische Computer oder 3-D-Fernsehen."

In Anbetracht ihrer interessanten Eigenschaften werden ihn dabei die sogenannten "bent-core-Moleküle", jene also in Bananenform, nicht so schnell loslassen. "Das Arbeitsgebiet ist einfach einer der innovativsten Forschungsschwerpunkte in der supramolekularen Chemie weicher Materie", erklärt Professor Tschierske. Die kleine Plastikbanane in seinem Büro dürfte daher noch häufig für Demonstrationszwecke genutzt werden.

Originalveröffentlichung: L. E. Hough et al.; "Chiral Isotropic Liquids from Achiral Molecules"; Science 2009, Vol. 325, Seite 452 ff.

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

Rotating Ring Disk Elektrode Rotator

Rotating Ring Disk Elektrode Rotator von C3 Prozess- und Analysentechnik

Präzise Rotation und einfacher Elektrodenwechsel - Entdecken Sie das innovative Rotator-System!

rotierende Scheibenelektroden
Elektrochemische Messzellen und Elektroden

Elektrochemische Messzellen und Elektroden von C3 Prozess- und Analysentechnik

Ersetzen Sie viele Messzellen mit unserer vielseitigen Voltammetriezelle für präzise Messergebnisse

elektrochemische Messzellen
Reference 620

Reference 620 von C3 Prozess- und Analysentechnik

Potentiostat / Galvanostat / ZRA mit maximaler Empfindlichkeit und minimalem Rauschen für wegweisende Forschung

elektrochemische Systeme
Interface 1010

Interface 1010 von C3 Prozess- und Analysentechnik

Optimieren Sie Ihre elektrochemische Messungen für präzise Ergebnisse und vielfältige Anwendungsmöglichkeiten

Potentiostate
Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

Alle FT-IR-Spektrometer Hersteller