Nanokapseln für die künstliche Photosynthese

04.11.2009 - Deutschland

Die Photosynthese der Pflanzen nachahmen? Wenn das gelänge, hätte die Menschheit einige Sorgen weniger. Chemiker von der Uni Würzburg haben auf dem Weg zur künstlichen Photosynthese jetzt Fortschritte erzielt.

Faszinierend komplex ist die Struktur, die an der Universität Würzburg in den Labors der Organischen Chemie entwickelt wurde: Tausende von gleichartigen Molekülen drängen sich zu einer Kapsel zusammen, die mit einer anderen Sorte von Molekülen gefüllt ist. Nur 20 bis 50 Nanometer beträgt der Durchmesser einer Kapsel.

Derart aufwändige Gebilde sind in der Chemie nicht gerade alltäglich. Außerdem können sie etwas, das für chemisch synthetisierte Moleküle bislang nicht beschrieben ist.

Eingekapselte Moleküle übertragen Energie

Die Nanokapseln besitzen eine Eigenschaft, die bei der Photosynthese der Pflanzen wichtig ist: Die in der Kapsel liegenden Moleküle absorbieren Lichtenergie und geben einen Teil davon in Form von Fluoreszenzlicht wieder ab. Den anderen Teil aber übertragen sie mittels Energietransfer auf die Kapselmoleküle, die daraufhin ebenfalls Fluoreszenzlicht ausschicken.

Bei der Photosynthese geschieht - vereinfacht gesagt - nichts anderes: Moleküle fangen die Energie des Sonnenlichts ein und übertragen sie in einem komplizierten Prozess auf andere Moleküle, bis die Energie am Ende chemisch gebunden ist: Die Kraft der Sonne steckt dann in wertvollen Kohlenhydraten, aus denen Pflanzen, Tiere und Menschen ihre Lebensenergie schöpfen.

Prinzipiell sollten sich die Nanokapseln daher als Bausteine für eine künstliche Photosynthese-Maschine eignen. "Das Licht würden sie sogar wesentlich effizienter nutzen als Pflanzen, weil ihre synthetischen Doppelschichtmembranen zu hundert Prozent aus photoaktivem Material bestehen", sagt Professor Frank Würthner.

Wozu künstliche Photosynthese gut ist

Warum die Forschung nach der künstlichen Photosynthese strebt? Pflanzen verbrauchen bei der Photosynthese den "Klimakiller" Kohlendioxid. Angesichts der globalen Erwärmung sehen viele Wissenschaftler eine künstliche Photosynthese als Möglichkeit, um das Treibhausgas Kohlendioxid in der Atmosphäre mengenmäßig zu reduzieren. Außerdem würden bei diesem Prozess wertvolle Rohstoffe entstehen: Zucker, Stärke und das Gas Methan.

Einzigartiges Material für die Kapselhülle

Die Würzburger Nanokapseln bestehen aus einem einzigartigen Material. Entwickelt wurde es im Arbeitskreis von Frank Würthner auf der Basis so genannter amphiphiler Perylenbisimide. Gibt man den als Pulver isolierbaren Grundstoff in Wasser, bilden seine Moleküle dort automatisch so genannte Vesikel, die aber noch nicht beständig sind. Erst durch eine Photovernetzung mit Licht werden sie zu robusten Nanokapseln, die in wässriger Lösung stabil sind - egal welcher pH-Wert dort herrscht.

Bispyrene als Füllung der Kapseln

Die Füllung der Nanokapseln mit weiteren photoaktiven Molekülen ist dem chinesischen Gastwissenschaftler Dr. Xin Zhang gelungen. Als Stipendiat der Humboldt-Stiftung hält er sich derzeit im Arbeitskreis von Professor Würthner auf.

Zhang schleuste Bispyren-Moleküle in die Nanokapseln ein. Ihre Besonderheit: Sie verändern ihre Gestalt in Abhängigkeit von der Umgebung. Bei niedrigem pH-Wert, also in einer sauren Umgebung, nehmen sie eine langgestreckte Form an. Regt man sie mit UV-Licht an, strahlen sie blaues Fluoreszenzlicht aus.

Steigt der pH-Wert, klappen sich die Moleküle zusammen. In dieser Gestalt geben sie grünes Fluoreszenzlicht ab. In diesem Zustand regen die Bispyrene die Kapselhülle energetisch an - und die reagiert darauf mit roter Fluoreszenz.

Blau, grün und rot. Überlagern sich die drei Grundfarben, kommt dabei weiß heraus - wie bei einem Farbfernseher. So ist es auch bei den Nanokapseln: Bei einem pH-Wert von 9, also recht nahe beim Neutralpunkt, strahlen sie weißes Fluoreszenzlicht ab - "ein in der Sensorik bislang einmaliger Effekt, der wegweisend für das Design von Fluoreszenzsonden für die Lebenswissenschaften sein dürfte", so Professor Würthner.

Nanosonde für pH-Messungen

Die Würzburger Chemiker haben damit eine höchst empfindliche Nanosonde zur Hand: Denn über die Wellenlänge des Fluoreszenzlichts, das die Nanokapseln ausstrahlen, lässt sich der pH-Wert einer wässrigen Lösung mit nanoskaliger Ortsauflösung bestimmen.

Nicht nur für die künstliche Photosynthese kommen die Nanokapseln darum in Betracht, sondern auch für diagnostische Anwendungen: Zum Beispiel könnte man sie mit speziellen Oberflächenstrukturen ausstatten, die gezielt an Tumorzellen andocken und diese dann mittels Fluoreszenz sichtbar machen.

Beide möglichen Anwendungen sind Gegenstand weiterer Forschungsarbeiten am Lehrstuhl von Frank Würthner. Die hier beschriebenen Arbeiten wurden von der Deutschen Forschungsgemeinschaft gefördert.

Originalveröffentlichung: Xin Zhang, Stefanie Rehm, Marina M. Safont-Sempere & Frank Würthner; "Vesicular perylene dye nanocapsules as supramolecular fluorescent pH sensor systems"; Nature Chemistry 1, 623 - 629 (2009)

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...

Verwandte Inhalte finden Sie in den Themenwelten

Themenwelt Synthese

Die chemische Synthese steht im Zentrum der modernen Chemie und ermöglicht die gezielte Herstellung von Molekülen mit spezifischen Eigenschaften. Durch das Zusammenführen von Ausgangsstoffen in definierten Reaktionsbedingungen können Chemiker eine breite Palette von Verbindungen erstellen, von einfachen Molekülen bis hin zu komplexen Wirkstoffen.

20+ Produkte
5+ White Paper
20+ Broschüren
Themenwelt anzeigen
Themenwelt Synthese

Themenwelt Synthese

Die chemische Synthese steht im Zentrum der modernen Chemie und ermöglicht die gezielte Herstellung von Molekülen mit spezifischen Eigenschaften. Durch das Zusammenführen von Ausgangsstoffen in definierten Reaktionsbedingungen können Chemiker eine breite Palette von Verbindungen erstellen, von einfachen Molekülen bis hin zu komplexen Wirkstoffen.

20+ Produkte
5+ White Paper
20+ Broschüren

Themenwelt Sensortechnik

Die Sensortechnik hat die chemische Industrie revolutioniert, indem sie präzise, zeitnahe und zuverlässige Datenbereitstellung in einer Vielzahl von Prozessen ermöglicht. Vom Überwachen kritischer Parameter in Produktionslinien bis hin zur Früherkennung potenzieller Störungen oder Gefahren – Sensoren sind die stillen Wächter, die Qualität, Effizienz und Sicherheit gewährleisten.

4 Produkte
2 White Paper
4 Broschüren
Themenwelt anzeigen
Themenwelt Sensortechnik

Themenwelt Sensortechnik

Die Sensortechnik hat die chemische Industrie revolutioniert, indem sie präzise, zeitnahe und zuverlässige Datenbereitstellung in einer Vielzahl von Prozessen ermöglicht. Vom Überwachen kritischer Parameter in Produktionslinien bis hin zur Früherkennung potenzieller Störungen oder Gefahren – Sensoren sind die stillen Wächter, die Qualität, Effizienz und Sicherheit gewährleisten.

4 Produkte
2 White Paper
4 Broschüren