Selbstoptimierende Katalysatoren für die Wasserspaltung zur grünen Wasserstoffproduktion
Kostengünstige und effiziente Katalysatoren, deren Leistung überraschenderweise mit der Zeit zunimmt
Wasserstoff ist eine viel diskutierte Option auf dem Weg zur CO₂-neutralen Energieerzeugung. Elektrizität aus erneuerbaren Quellen – vor allem Wind- und Sonnenenergie – wird in Elektrolyseuren genutzt, um Wasser in seine Bestandteile Sauerstoff und speicherbaren Wasserstoff zu zerlegen. Um diese Reaktion in Gang zu bringen, sind Katalysatoren unerlässlich. Bislang wurden Edelmetalloxide wie Rutheniumdioxid und Iridiumdioxid verwendet, die jedoch knapp und kostenintensiv sind und sich in saurem und alkalischem Milieu leicht zersetzen.
Dr. Dandan Gao, Nachwuchsgruppenleiterin und DFG-Walter-Benjamin-Stipendiatin an der Johannes Gutenberg-Universität Mainz (JGU), und ihr Team haben daher einen alternativen Katalysator entwickelt: Mit Kobalt und Wolfram besteht er aus leicht zugänglichen, kostengünstigen Materialien. „Das Einzigartige ist: Während herkömmliche Katalysatoren ihre Leistung beibehalten – oder sogar etwas davon verlieren, weil sie nicht stabil genug sind –, steigert unser Katalysator seine Leistung mit der Zeit“, erklärt Dandan Gao. „Nach der Optimierung ist die Aktivität sogar höher als bei herkömmlichen Katalysatoren.“ Die Ergebnisse wurden kürzlich in der Fachzeitschrift Angewandte Chemie veröffentlicht.
Gründe für die Selbstoptimierung
Doch was ist der Grund für diese außergewöhnliche Selbstoptimierung? Um diese Frage zu beantworten, führten die Wissenschaftlerinnen und Wissenschaftler sowohl experimentelle als auch theoretische Untersuchungen durch. Sie fanden unter anderem heraus, dass sich die chemische Natur des katalysierenden Kobalt-Wolfram-Oxids durch die Wasserspaltung verändert: Während Kobalt zunächst vor allem als Co²⁺ vorlag, wandelte es sich zunehmend in Co³⁺ um, und auch bei Wolfram verschob sich das Verhältnis von W⁵⁺ zu W⁶⁺. „Bei der Spaltung von Wasserstoff laufen zwei Reaktionen ab: die Wasserstoffreaktion und die Sauerstoffreaktion. Die Sauerstoffreaktion ist der Engpass für die Gesamtreaktion, weshalb wir motiviert sind, einen fortschrittlichen Katalysator dafür zu entwickeln“, sagt Gao.
Während die Sauerstoffreaktion zunächst von der aktiven Wolframstelle angetrieben wird, verlagert sich diese mit der Zeit auf die aktive Kobaltstelle – die aktive Oberfläche des Katalysators vergrößert sich durch die Wasserspaltung ebenfalls. Auch bei der Hydrophilie der Oberfläche sind Veränderungen zu beobachten: Sie wird wasserliebender, was natürlich für die elektrochemische Wasserspaltung äußerst hilfreich ist. „Insgesamt können wir deutlich reduzierte Überspannungen und erhöhte Stromdichten feststellen, begleitet von einer erheblichen Steigerung der Reaktionskinetik der Sauerstoffentwicklung“, fasst Gao zusammen. Gute Nachrichten für die Wasserstoffproduktion der Zukunft.
Förderung im Walter Benjamin-Programm der DFG
Dandan Gao wird seit Juni 2023 durch das Walter Benjamin-Programm der Deutschen Forschungsgemeinschaft (DFG) gefördert. Dieses ermöglicht es Wissenschaftlerinnen und Wissenschaftlern in der Qualifizierungsphase nach der Promotion, ein eigenes Forschungsprojekt an einem Ort ihrer Wahl selbstständig durchzuführen. Die aufnehmende Forschungseinrichtung, in diesem Fall die Universität Mainz, unterstützt das Projekt.
Die jetzt veröffentlichte Forschungsarbeit wurde außerdem von der Carl-Zeiss-Stiftung, der Alexander von Humboldt-Stiftung und dem JGU-Profilbereich SusInnoScience, kurz für „Sustainable chemistry as the key to innovation in resource-efficient science in the Anthropocene”, unterstützt.
Originalveröffentlichung
Christean Nickel, David Leander Troglauer, Zsolt Dallos, Dhouha Abid, Kevin Sowa, Magdalena Ola Cichocka, Ute Kolb, Boris Mashtakov, Bahareh Feizi Mohazzab, Shikang Han, Leon Prädel, Lijie Ci, Deping Li, Xiaohang Lin, Minghao Hua, Rongji Liu, Dandan Gao; "Self‐optimizing Cobalt Tungsten Oxide Electrocatalysts toward Enhanced Oxygen Evolution in Alkaline Media"; Angewandte Chemie International Edition, 2025-2-12
Meistgelesene News
Originalveröffentlichung
Christean Nickel, David Leander Troglauer, Zsolt Dallos, Dhouha Abid, Kevin Sowa, Magdalena Ola Cichocka, Ute Kolb, Boris Mashtakov, Bahareh Feizi Mohazzab, Shikang Han, Leon Prädel, Lijie Ci, Deping Li, Xiaohang Lin, Minghao Hua, Rongji Liu, Dandan Gao; "Self‐optimizing Cobalt Tungsten Oxide Electrocatalysts toward Enhanced Oxygen Evolution in Alkaline Media"; Angewandte Chemie International Edition, 2025-2-12
Themen
Organisationen
Weitere News aus dem Ressort Wissenschaft

Holen Sie sich die Chemie-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.