Eine Teleskopschiene für Nanomaschinen
Mit DNA-Origami gefaltete Nanostäbe mit Goldpartikeln als Zahnradmotoren gegeneinander verschieben
© MPI für Intelligente Systeme
© MPI für Intelligente Systeme
Bei der Zellteilung ist eine ausgeklügelte Nanomaschinerie am Werk. Gleich zu Beginn des Prozesses schieben Motorproteine Mikrotubuli – das sind aus Proteinen geformte Nanoröhrchen – zum Spindelapparat auseinander. An diesem Proteingerüst wandern dann die Chromosomen eines Paares zu den beiden Polen, damit aus einem Zellkern zwei entstehen. „Wir möchten die verschiedenen Funktionen erforschen, die natürliche Systeme erfüllen können – in diesem Fall molekulare Motoren“, sagt Laura Na Liu, die am Stuttgarter Max-Planck-Institut eine Forschungsgruppe leitet. Ihrem Team, dem neben den Forschern des Max-Planck-Instituts für Intelligente Systeme Wissenschaftler der Universitäten Heidelberg und Stuttgart angehörten, hat nun ein Nanobauteil konstruiert, das genauso arbeitet wie zwei Mikrotubuli, die von Motorproteinen wie gegeneinander bewegt werden, um eine längere Nanofaser zu bilden.
Ein Fernziel: molekulare Fabriken für Nanoroboter
„Unsere Motivation ist es, etwas nachzubauen – denn nur dann, wenn man etwas nachahmt, kann man es wirklich verstehen“, sagt Maximilian Urban, der in er Forschungsgruppe von Laura Na Liu promoviert. Zudem streben die Wissenschaftler Anwendungen in der Nanotechnologie etwa in der Nanomedizin an, die allerdings noch weit in der Zukunft liegen: „Wir möchten künstliche molekulare Fabriken bauen, in denen wir Nanoroboter mit effektiver Sensorik und Rückkopplungskontrolle herstellen können, so dass sie Medikamente transportieren und dorthin liefern können, wo sie gebraucht werden, zum Beispiel zu einer Krebszelle“, erklärt Maximilian Urban.
Aus DNA gefaltet, mit DNA angetrieben
Die Teleskopschienen biologischer Zellen imitieren die Stuttgarter Forscher mithilfe der DNA-Origami-Technik. „Wir nehmen schlaffe DNA-Stränge und falten sie – ähnlich der japanischen Kunst, Papier in Objekte zu falten", sagt Laura Na Liu. Das DNA-Origami stellte der US-amerikanische Forscher Paul Rothemund im Jahr 2006 vor. Die Forscher um Laura Na Liu und Maximilian Urban legen auf diese Weise DNA-Stränge zu Bündeln zusammen und formen so die beiden Stäbe, die sie wie Schienen gegeneinander verschieben möchten. Dabei sorgen sie dafür, dass aus den starren DNA-Bündeln in genau vorgegebener Reihenfolge unterschiedliche DNA-Stücke wie Fransen heraushängen. An die DNA-Fransen können jeweils zwei Nanokristalle aus Gold zwischen zwei Nanostäben andocken, die als Zahnräder wirken und die Stäbe gegeneinander verschieben. Denn die goldenen Nanopartikel haben die Forscher ebenfalls mit hunderten von DNA-Fäden beschichtet. „Sie stehen ab, als würden dem Nanokristall die Haare zu Berge stehen“, sagt Maximilian Urban.
Um die goldenen Nanopartikel zu drehen und die DNA-Stäbe auf diese Weise zu bewegen, nutzen die Forscher einen Trick: DNA-Schnipsel, die als Gegenstücke zu den verschiedenen DNA-Fransen der Nanostäbe passen, können DNA-Brücken zwischen den Nanostäben und den Goldpartikeln lösen und knüpfen. Wenn die Forscher also die passenden in Wasser gelösten DNA-Schnipsel zu der Nanoteleskopschiene geben, bricht jeweils eine Bindung der Goldpartikel zu jedem DNA-Stab und an den jeweils benachbarten Positionen entstehen neue. Für das Ensemble wählten die Forscher nun genau so, dass sich der Goldkristall dreht und die DNA-in entgegengesetzte Richtungen drückt.
Mögliche Komponenten einer künstlichen Zelle
Mit dem neuen Bauteil erweitern die Forscher die Palette möglicher Komponenten von Nanomaschinen, zu denen sie selbst zum Beispiel schon einen ganz ähnlich wie die Zahnräder der Teleskopschiene funktionierenden Nanoläufer beigesteuert haben. Möglicherweise könnten aus solchen Nanobauteilen künftig auch einmal synthetische Zellen, die wie biologische Zellen Stoffwechsel betreiben, konstruiert werden. „Die Frage ist noch nicht ganz geklärt, wie wir künstliche Zellen mit allen künstlichen Komponenten nachbauen können." Wenn der Gerätepark der DNA-basierten Nanotechnologie einmal vielfältig genug ist, können Forscher diese Frage vielleicht klären – indem sie versuchen, die Komponenten zu einer Zelle zusammenzusetzen.