Übergangsmetallkomplexe: Gemischt geht's besser
T. Splettstößer/HZB
Übergangsmetall-Komplexe – das ist ein sperriges Wort für eine Klasse von Molekülen mit interessanten Eigenschaften. Im Zentrum sitzt ein Element aus der Gruppe der Übergangsmetalle. Die äußeren Elektronen des Übergangsmetalls befinden sich auf keulenartig ausgedehnten d-Orbitalen, die sich durch äußere Anregung gut beeinflussen lassen. Manche Übergangsmetall-Komplexe beschleunigen als Katalysatoren bestimmte chemische Reaktionen, andere können sogar Sonnenlicht in Strom umwandeln: So basiert die bekannte Farbstoff-Solarzelle, die Michael Graetzel (EPFL) in den 1990er Jahren entwickelt hat, auf einem Ruthenium-Komplex.
Eisen statt Ruthenium
Allerdings ist es bisher nicht gelungen, das seltene und teure Übergangsmetall Ruthenium durch ein preiswerteres Element zu ersetzen, zum Beispiel durch Eisen. Das ist erstaunlich, denn auch beim Eisen befinden sich die gleiche Anzahl an Elektronen auf den äußeren weitausgedehnten d-Orbitalen. Die Anregung mit Licht im sichtbaren Bereich setzt jedoch in den meisten bisher untersuchten Eisen-Komplexverbindungen keine langlebigen Ladungsträger frei.
Inelastische Röntgenstreuung an BESSY II
Diese Frage hat nun ein Team an BESSY II genauer untersucht. Die Gruppe um Prof. Dr. Alexander Föhlisch hat dafür systematisch unterschiedliche Eisen-Komplexverbindungen in Lösung mit weichem Röntgenlicht bestrahlt. Dabei konnten sie messen, wieviel Energie dieses Lichts von den Molekülen absorbiert wurde (Methode der inelastischen Röntgenstreuung, RIXS). Sie untersuchten Komplexe, in denen das Eisenatom entweder von Bipyridin-Molekülen oder Cyan-Gruppen (CN) umgeben waren, sowie Mischformen, in denen das Eisenzentrum mit je einem Bipyridin und vier Cyan-Gruppen verbunden ist.
Ergebnis: Mit Mischformen könnte es klappen
Zwei Wochen lang wechselten sich die Teammitglieder im Schichtbetrieb ab, um die nötigen Messdaten zu erhalten. Die Messungen zeigten, dass die bisher kaum untersuchten Mischformen besonders interessant sind: Wenn Eisen nur von drei Bipyridin-Molekülen oder sechs Cyan-Gruppen (CN) umgeben ist, dann sorgt eine optische Anregung nur für eine kurzzeitige oder gar keine Freisetzung von Ladungsträgern. Anders wird es erst, wenn man zwei der Cyangruppen durch ein Bipyridin-Molekül ersetzt. „Dann sehen wir durch die Anregung mit weichem Röntgenlicht wie 3d-Orbitale vom Eisen delokalisieren und bei den Cyangruppen verortet werden können, während gleichzeitig das Bipyridin-Molekül den Ladungsträger aufnehmen kann“, erklärt Raphael Jay, Erstautor der Studie, der über das Thema promoviert.
Die Ergebnisse zeigen, dass sich auch preiswerte Übergangsmetallkomplexe für den Einsatz in Solarzellen eignen könnten – sofern man sie mit passenden Molekülgruppen umgibt. Hier gibt es also noch ein reiches Feld für die Materialentwicklung.
Originalveröffentlichung
"The nature of frontier orbitals under systematic ligand exchange in (pseudo-)octahedral Fe(II) complexes"; Raphael M. Jay, Sebastian Eckert, Mattis Fondell, Piter S. Miedema, Jesper Norell, Annette Pietzsch, Wilson Quevedo, Johannes Niskanen, Kristjan Kunnus and Alexander Föhlisch; Physical Chemistry Chemical Physics; 2018
Meistgelesene News
Originalveröffentlichung
"The nature of frontier orbitals under systematic ligand exchange in (pseudo-)octahedral Fe(II) complexes"; Raphael M. Jay, Sebastian Eckert, Mattis Fondell, Piter S. Miedema, Jesper Norell, Annette Pietzsch, Wilson Quevedo, Johannes Niskanen, Kristjan Kunnus and Alexander Föhlisch; Physical Chemistry Chemical Physics; 2018
Themen
Organisationen
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.