Hülle macht Nanodrähte vielseitiger

Halbleiter-Nanodrähte lassen sich über große Energiebereiche maßschneidern

28.06.2019 - Deutschland

Nanodrähte können LEDs farbenreicher, Solarzellen effizienter oder Rechner schneller machen. Vorausgesetzt, die winzigen Halbleiter wandeln elektrische Energie und Licht bei geeigneten Wellenlängen ineinander um. Einem Forscherteam am Helmholtz-Zentrum Dresden-Rossendorf (HZDR) ist es gelungen, Nanodrähte zu fertigen, deren Arbeits-Wellenlänge sich über einen großen Bereich frei wählen lässt – und zwar einzig über die Struktur der Hülle. Maßgeschneiderte Nanodrähte könnten verschiedene Funktionen in einem optoelektronischen Bauteil übernehmen, ohne auf unterschiedliche Materialien ausweichen zu müssen. Das macht die Bauteile leistungsfähiger, günstiger und einfacher zu integrieren, wie das Team in der Fachzeitschrift Nature Communications berichtet.

HZDR/René Hübner

Querschnitt durch einen Nanodraht mit Galliumarsenid-Kern, Hülle aus Indium-Aluminiumarsenid und Deckschicht aus Indium-Gallium-Arsenid (Gallium ist blau, Indium rot, Aluminium cyan eingefärbt). Zum Vergleich: Der weiße Balken entspricht 30 Nanometern. Das Bild wurde mittels energiedispersiver Röntgenspektroskopie aufgenommen.

Nanodrähte sind Alleskönner. Sie sind als kleinste Bausteine für miniaturisierte photonische und elektronische Bauteile der Nanotechnologie einsetzbar. Dazu gehören optische Verschaltungen auf Chips, neuartige Sensoren, LEDs, Solarzellen oder auch innovative Quantentechnologien. Freistehende Nanodrähte machen neuere Halbleitertechnologien erst kompatibel zu den herkömmlichen Technologien auf Silizium-Basis. Weil die Kontaktfläche zum Silizium-Träger sehr klein ist, überwinden sie typische Schwierigkeiten beim Verbinden verschiedenartiger Materialien.

Für ihre mehrjährige Studie züchteten die Forscher in Dresden zunächst Nanodrähte aus dem Halbleiter-Material Galliumarsenid auf Silizium-Trägern. Im nächsten Schritt umhüllten sie die hauchdünnen Drähte mit einer weiteren Materialschicht, der sie zusätzlich Indium beimischten. Ihr Ziel: Durch die ungleiche Kristallstruktur der Materialien wollten sie im Drahtkern eine mechanische Verspannung provozieren, welche die elektronischen Eigenschaften von Galliumarsenid verändert. So verkleinert sich die Bandlücke des Halbleiters und die Elektronen werden beweglicher. Um diesen Effekt zu verstärken, gaben die Forscher immer mehr Indium in die Hülle oder erhöhten deren Dicke. Das Ergebnis übertraf ihre Erwartungen bei Weitem.

Bekannter Effekt ins Extrem getrieben

„Wir haben einen bekannten Effekt bis ins Extrem getrieben“, betont Emmanouil Dimakis, Leiter der Studie, zu der Forscher des HZDR, der Technischen Universität Dresden und des DESY in Hamburg beigetragen haben. „Die erreichten sieben Prozent Verspannung sind ein riesiger Wert.“

Bei dieser Verspannung hätte Dimakis erwartet, Störungen in den Halbleitern zu sehen: Erfahrungsgemäß verbiegt sich der Drahtkern oder es entstehen Defekte. Dass es nicht dazu kam, begründen die Forscher mit den besonderen Bedingungen ihrer Experimente: Erstens züchteten sie besonders dünne Galliumarsenid-Drähte – etwa fünftausend Mal feiner als ein menschliches Haar. Zweitens gelang es dem Team, die Drahthüllen bei ungewöhnlich niedrigen Temperaturen herzustellen. Dies friert die Oberflächen-Diffusion der Atome quasi ein und erzwingt das gleichmäßige Wachstum der Hülle um den Kern. Seine Entdeckung bekräftigte das Forscherteam durch mehrere unabhängige Messreihen an Anlagen in Dresden sowie an den brillanten Röntgenlichtquellen PETRA III in Hamburg und Diamond in England.

Die außergewöhnlichen Ergebnisse motivierten die Forscher zu weiteren Untersuchungen: „Unser Fokus verlagerte sich auf die Frage, was die extrem hohe Verspannung im Kern des Nanodrahts auslöst und wie dies für Anwendungen genutzt werden könnte“, erinnert sich Dimakis. „Galliumarsenid ist als Material seit Jahren bekannt, aber Nanodrähte sind speziell. Auf der Nano-Skala kann ein Material völlig neue Eigenschaften zeigen.“

Anwendungen für Glasfasernetze werden möglich

Die Forscher erkannten, dass sie durch die hohe Verspannung die Bandlücke des Halbleiters Galliumarsenid bis zu so niedrigen Energien verschieben konnten, dass sie sogar für Wellenlängen der Glasfasernetze kompatibel wird. Ein technologischer Meilenstein, denn dieser Spektralbereich ließ sich bislang nur über besondere, Indium-haltige Legierungen realisieren, die durch ihren Material-Mix aber verschiedene technologische Probleme mitbringen.

Nanodrähte lassen sich nur mithilfe hochpräziser Verfahren herstellen. Am HZDR existiert dafür seit vier Jahren eine spezielle Anlage: das Molekularstrahlepitaxie-Labor. Hier wachsen die Nanodrähte selbstorganisiert aus Atomen oder kleinen Molekülen heran, mit denen Siliziumträger im Ultrahochvakuum beschossen werden. Emmanouil Dimakis war federführend am Aufbau des Labors beteiligt. Einen großen Teil der aktuell veröffentlichten Untersuchungen verantwortete Leila Balaghi im Rahmen ihrer Promotion.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...