Ultrakalte Quantenteilchen brechen klassische Symmetrie
Viele Phänomene der Natur zeigen in ihrer dynamischen Entwicklung Symmetrien, die Aufschluss über den inneren Mechanismus eines Systems geben können. Im Bereich der Quantenphysik sind diese Symmetrien jedoch nicht immer erfüllt. Wissenschaftler vom Zentrum für Quantendynamik der Universität Heidelberg konnten bei Laborexperimenten mit ultrakalten Lithiumatomen nun erstmals eine bereits in der Theorie vorhergesagte Abweichung von der klassischen Symmetrie nachweisen.

Eine Wolke aus Quantenteilchen verletzt bei Ausdehnung die Skalensymmetrie.
Enss
„In der Welt der klassischen Physik steigt die Energie eines idealen Gases proportional zum Druck, den man darauf ausübt. Das ist eine unmittelbare Folge der Skalensymmetrie, und dieselbe Relation gilt in jedem skaleninvarianten System. In der Welt der Quantenmechanik können jedoch die Wechselwirkungen zwischen Quantenteilchen so stark werden, dass diese klassische Skalensymmetrie nicht mehr gültig ist“, erläutert Privatdozent Dr. Tilman Enss vom Institut für Theoretische Physik, dessen Forschungsgruppe bei diesen Experimenten mit der Gruppe von Prof. Dr. Selim Jochim vom Physikalischen Institut der Ruperto Carola zusammenarbeitet.
Bei ihren Experimenten haben die Forscher das Verhalten eines ultrakalten, supraflüssigen Gases aus Lithiumatomen untersucht. Wenn das Gas aus seinem Gleichgewichtszustand gebracht wird, beginnt es sich in einer „atmenden“ Bewegung immer wieder auszudehnen und zu komprimieren. Anders als klassische Teilchen können sich diese Quantenteilchen zu Paaren verbinden, was dazu führt, dass sich die Supraflüssigkeit umso schwerer komprimieren lässt, je dichter sie ist. Eine solche Abweichung von der klassischen Skalensymmetrie hat nun die Gruppe um die beiden Erstautoren der Studie Dr. Puneet Murthy und Dr. Nicolo Defenu – Mitarbeiter von Prof. Jochim und Dr. Enss – beobachtet und damit die Quantennatur dieses Systems unmittelbar nachgewiesen. Dieser Effekt gibt, so die Wissenschaftler, einen besseren Einblick in das Verhalten von Systemen mit ähnlichen Eigenschaften wie Graphen oder Supraleitern, bei denen Strom ohne jeglichen Widerstand fließen kann, wenn eine sogenannte Sprungtemperatur unterschritten wird.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft

Holen Sie sich die Chemie-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.