Neuer KI-Algorithmus bestimmt chemische Struktur anhand der gewünschten Funktion
Künstliche Intelligenz auf Schrödingers Spuren
ColiN00B, pixabay.com, CC0
Der von den Chemikern, Physikern und Informatikern entwickelte Algorithmus ist in der Lage, die Quantenzustände eines Moleküls, die sogenannte Wellenfunktion, die alle Eigenschaften dieses Moleküls bestimmen, zu berechnen. Dazu musste die KI lernen, grundlegende Gesetze der Physik zu verinnerlichen und Gleichungen der Quantenmechanik - wie zum Beispiel die Schrödingergleichung - zu lösen.
Das Lösen dieser und ähnlicher Gleichungen auf herkömmliche Weise erfordert enorme Rechnerkapazitäten und vor allem auch Monate an Rechnerzeit. „Genau hier liegt normalerweise der Engpass bei der rechnergestützten Entwicklung neuer, speziell für medizinische und industrielle Anwendungen entwickelter Moleküle“, so Prof. Dr. Klaus-Robert Müller, Professor für maschinelles Lernen an der TU Berlin. Der neu entwickelte Algorithmus kann dagegen auf einem Laptop oder Mobiltelefon innerhalb von Sekunden genaue Vorhersagen liefern.
„Die Veröffentlichung ist das Ergebnis einer dreijährigen gemeinsamen Anstrengung und erforderte Informatik-Know-how, um einen Algorithmus zu entwickeln, der flexibel genug ist, um die Form und das Verhalten von Wellenfunktionen zu erfassen, aber auch Chemie- und Physik-Know-how, um quantenchemische Daten zu verarbeiten und dazustellen“, so Dr. Reinhard Maurer vom Fachbereich Chemie der Universität Warwick.
Klaus-Robert Müller ergänzt: „Diese interdisziplinäre Arbeit ist ein wichtiger Fortschritt, denn sie zeigt, dass KI-Methoden die schwierigsten Aspekte der quantenchemischen Simulation erlernen können. Dazu gehört auch das sogenannte inverse Design, das besonders für die Medikamentenherstellung ein langjähriger Traum der Pharmakologie und der Chemie ist.“ Von inversem Design spricht man, wenn man eine bestimmte chemische Eigenschaft eines Moleküls vorgibt und aus diesen Vorgaben die entsprechende molekulare Struktur entwirft und optimiert. Das interdisziplinäre Team geht davon aus, dass sich KI-Methoden zukünftig weiter als wesentlicher Bestandteil in der Computerchemie und der Molekularphysik etablieren werden und auch nachhaltig das inverse molekulare Design ermöglichen werden.
„Diese Arbeit ermöglicht eine neue Ebene des Wirkstoffdesigns, bei der sowohl die elektronischen als auch die strukturellen Eigenschaften eines Moleküls zusammengeführt werden können, um die gewünschten Anwendungskriterien zu erreichen“, so Professor Dr. Alexandre Tkatchenko vom Fachbereich Physik der Universität Luxemburg.