Malen mit Kristallen
Berechnung der besten Fertigungsstrategie für organische elektronische Komponenten
Halbleiter aus organischen Materialien, z.B. für Leuchtdioden (OLEDs) und Solarzellen, könnten in Zukunft siliziumbasierte Elektronik ersetzen oder ergänzen. Die Effizienz solcher Bauelemente hängt entscheidend von der Qualität der dünnen Halbleiter-Schichten ab. Diese werden durch Beschichten oder Bedrucken mit "Tinten" erzeugt, die das Material enthalten. Forscher am Max-Planck-Institut für Polymerforschung (MPI-P) haben ein Computermodell entwickelt, das die Qualität in Abhängigkeit von der Verarbeitung, wie der Trocknungszeit oder der Beschichtungsgeschwindigkeit, vorhersagt. Dieses Modell soll die zeitaufwendigen Ansätze zur Prozess- und Produktoptimierung beschleunigen.

Mit Computersimulationen können Wissenschaftlerinnen und Wissenschaftler des MPI-P die Struktur von Kristallen bei organischen Halbleiterschichten vorausberechnen
© MPI-P
Organische Halbleiter werden heute für verschiedene elektronische Bauteile wie Leuchtdioden, Solarzellen und Transistoren verwendet. Wo einige dieser Anwendungen bereits weit verbreitet sind (insbesondere OLEDs), müssen andere noch erheblich verbessert werden, bevor sie zur Marktreife gebracht werden können. Solche Komponenten sind auf den Transport von Elektronen durch den organischen Halbleiter angewiesen. Bei OLEDs beispielsweise werden die Elektronen durch eine elektrische Spannung mit Energie versorgt, die sie dann wieder in Form von Licht emittieren können. Ist die Qualität der organischen Schicht jedoch schlecht, wird ein Großteil der Energie an das Material zurückgegeben, ohne Licht abzugeben.
Eine attraktive Methode zur Herstellung der Halbleiterschichten ist das Drucken oder Beschichten mit einer Tinte, die den organischen Halbleiter in einem Lösungsmittel enthält. Beim Verdampfen des Lösungsmittels bildet der Halbleiter Kristalle. Die Größe und Form dieser Kristalle bestimmen das Aussehen und die Qualität der Funktionsschicht. "Die optimale Kristallgröße und -form ist stark anwendungsabhängig", sagt Dr. Jasper J. Michels, Hauptautor der Studie und Gruppenleiter im Arbeitskreis von Prof. Paul Blom am MPI-P. Ein großes Problem ist, dass es bisher nicht möglich war, vorherzusagen, wie die Kristallisation von den Eigenschaften der Druckfarbe und des Beschichtungsprozesses abhängt. Daher ist es in der Regel zeitaufwändig, materialintensiv und teuer, eine Herstellungsstrategie zu finden, die die bestmögliche Produktleistung ergibt. "Nicht in der Lage zu sein, die Eignung der beschichteten Schichten vorherzusagen, verhindert die Übertragung der Herstellung im Labormaßstab auf die industrielle Produktion und hindert die Verbreitung neuer Anwendungen für die organische Elektronik", erklärt Michels.
Ein Team von Wissenschaftlern unter der Leitung von Michels hat jetzt ein Computermodell entwickelt, das solche Vorhersagen machen kann. Die Berechnungen ahmen die tatsächliche Beschichtung und Kristallisation nach, da sie in Echtzeit erfolgt. Indem sie die Beschichtungsgeschwindigkeit in ihren Computersimulationen erhöhten, zeigten die Autoren, wie die Form der Kristalle einen Übergang von Bändern über längliche Ellipsoide zu kleinen Polygonen zeigt. Die Simulationen zeigten, dass es stark davon abhängt, wie schnell das Lösungsmittel verdunstet, ob diese Formübergänge plötzlich oder allmählich erfolgen. "Wenn wir jetzt wissen, welche Rolle Kristall-Kristall-Grenzflächen während der Operation spielen, kann unser neues Modell die Material- und Prozesseinstellungen vorberechnen, um einen optimalen Kompromiss zwischen z.B. Produktionsgeschwindigkeit und Filmqualität zu erreichen", erklärt Michels. "Wir hoffen daher, dass unsere Arbeit ein wichtiger Schritt ist, um schließlich neue Produkte auf der Basis organischer Halbleiter verfügbar zu machen".
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Diese Produkte könnten Sie interessieren

OCA 200 von DataPhysics
Mit Kontaktwinkelmesssystem Benetzung, Festkörper und Flüssigkeiten umfassend charakterisieren
Das OCA 200 löst mit intuitiver Software und modularem Aufbau individuelle Messaufgaben

Dursan von SilcoTek
Innovative Beschichtung revolutioniert LC-Analytik
Edelstahlkomponenten mit der Leistung von PEEK – inert, robust und kostengünstig

Holen Sie sich die Chemie-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.
Meistgelesene News
Weitere News von unseren anderen Portalen
Zuletzt betrachtete Inhalte

Mikroschwimmer bewegen sich wie die Motten zum Licht - Beeindruckendes Verhalten von synthetischen Mikroschwimmern untersucht

ENGEMANN u. CO. int. Spedition GmbH und Co. KG - Haan, Deutschland

Jabitherm Rohrsysteme AG - Troisdorf, Deutschland

Sensortherm GmbH - Sulzbach, Deutschland

Oort Energy sichert sich Startfinanzierung in Höhe von 5 Millionen GBP zur Dekarbonisierung der Industrie mit grünem Wasserstoff
Bitumen
