Neue Forschung enthüllt den Mechanismus des Ionentransports in wässrigen Li-Ionen-Batterien

Mikroskopisches Verständnis der Solvatationsstruktur offenbart Heterogenität in den superkonzentrierten Wasser-in-Salz-Elektrolyten

01.12.2021 - Korea, Rep.

Lithium-Ionen-Batterien sind wegen ihrer entflammbaren organischen Elektrolyte für ihre Brandgefahr berüchtigt. Daher wurden große Anstrengungen unternommen, um Elektrolyte auf Wasserbasis als sicherere Alternative zu verwenden. Dies wird jedoch durch das Problem erschwert, dass Wassermoleküle innerhalb der Batterie eine Elektrolyse in Wasserstoff und Sauerstoff durchlaufen, was zu verschiedenen Problemen führt, wie z. B. einem schlechten Wirkungsgrad, einer kurzen Lebensdauer der Geräte und Sicherheitsproblemen.

Institute for Basic Science

Die Wassermoleküle, die H-Bindungen mit anderen Wassermolekülen eingehen, haben eine schnelle Rotationsdynamik. Die schnellen Rotationseigenschaften der Wassermoleküle fördern den Li-Ionen-Transport durch Fahrzeugmigration.

Um die unerwünschte Elektrolyse von Wasser zu unterdrücken, müssen die Salze in extrem hohen Konzentrationen in wässrigen Li-Ionen-Batterien gelöst werden. Sowohl das Volumen als auch das Gewicht des Salzes in diesen Elektrolyten sind höher als das von Wasser, weshalb sie auch als Wasser-in-Salz-Elektrolyte (WiSE) bezeichnet werden. Infolgedessen ist die Viskosität des Elektrolyten sehr hoch, was theoretisch den Transport von Lithium-Ionen behindern sollte. Nach der konventionellen Theorie, die davon ausgeht, dass das Wasser-Elektrolyt-System in dieser superkonzentrierten Umgebung als homogenes Gemisch existiert, ist dies durchaus zu erwarten. Mit anderen Worten, alle Wassermoleküle sollten mit den Ionen in Wechselwirkung treten, so dass die Wasserstoffbrückenbindungen zwischen den Wassermolekülen vollständig unterbrochen sind.

Der Li-Ionen-Transport ist in diesen hochviskosen WiSEs jedoch unerwartet schnell. Frühere Studien nutzten Raman-Spektroskopie und Molekulardynamiksimulationen (MD), um das erweiterte elektrochemische Stabilitätsfenster der Wassermoleküle in WiSE aufzuklären, indem sie die isolierten Wassermoleküle beobachteten, die in diesen superkonzentrierten wässrigen Elektrolyten vollständig von Ionen umgeben sind. Dies reichte jedoch nicht aus, um den schnellen Lithium-Ionen-Transport innerhalb der WiSE zu erklären.

Kürzlich hat ein Forscherteam am Center for Molecular Spectroscopy and Dynamics (CMSD) des Institute for Basic Science (IBS) und des Daegu Gyeongbuk Institute of Science & Technology (DGIST) den Zusammenhang zwischen Wasserdynamik und Lithium-Ionen-Transport aufgedeckt. Sie verwendeten polarisationsselektive Infrarot-Pump-Probe-Spektroskopie (IR-PP) und dielektrische Relaxationsspektroskopie (DRS), um Wassermoleküle in einer hochkonzentrierten Salzlösung zu beobachten.

IR-PP ist eine zeitaufgelöste nichtlineare Spektroskopie, mit der die Vibrations- und Rotationsdynamik eines einzelnen Wassermoleküls erfasst werden kann, was zur Bestimmung seiner Wasserstoffbrückenbindungspartner nützlich ist. In der Zwischenzeit dient DRS als ergänzendes Instrument zur Messung der Konzentration der im Elektrolyten vorhandenen chemischen Spezies und liefert Hinweise auf die kollektiven Eigenschaften der Lösung.

Mithilfe dieser Techniken stellte das Team fest, dass ein erheblicher Anteil des volumenartigen Wassers in WiSE die Eigenschaften von reinem Wasser aufweist. Das bedeutet, dass es selbst bei sehr hohen Salzkonzentrationen (28 m) noch "Taschen" mit Wassermolekülen gibt, die Wasserstoffbrückenbindungen mit anderen Wassermolekülen eingehen, was auf eine heterogene Solvatationsstruktur im Nanobereich hinweist. Darüber hinaus stellte sich heraus, dass die Rotationsdynamik von volumenartigem Wasser schneller ist als die von anionengebundenem Wasser. Mit diesen Beobachtungen wurde die Ursache für den schnellen Li-Ionen-Transport im Zusammenhang mit der großen Viskosität superkonzentrierter wässriger Elektrolyte identifiziert.

Die Forscher betonten: "Diese Studie ist der erste Fall, in dem die Beobachtung der Dynamik von Wassermolekülen in superkonzentrierten wässrigen Elektrolyten auf molekularer Ebene erklärt wird", und: "Dies ist möglich, weil IR-PP die Fähigkeit besitzt, Wassermoleküle nach ihren Wasserstoffbrückenbindungspartnern zu unterscheiden und zu beobachten."

Prof. CHO Min Haeng, der Direktor des CMSD, sagte: "Wasser spielt eine wichtige Rolle bei den Li-Ionen-Transportmechanismen, und nicht nur die gelösten Salze in superkonzentrierten wässrigen Elektrolyten. Es wird erwartet, dass diese Forschung Designprinzipien für andere superkonzentrierte Elektrolyte auf molekularer Ebene liefert, die den Transport von Li-Ionen fördern können."

Hinweis: Dieser Artikel wurde mit einem Computersystem ohne menschlichen Eingriff übersetzt. LUMITOS bietet diese automatischen Übersetzungen an, um eine größere Bandbreite an aktuellen Nachrichten zu präsentieren. Da dieser Artikel mit automatischer Übersetzung übersetzt wurde, ist es möglich, dass er Fehler im Vokabular, in der Syntax oder in der Grammatik enthält. Den ursprünglichen Artikel in Englisch finden Sie hier.

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

Battery Testing Services

Battery Testing Services von Battery Dynamics

Erfahren Sie mehr über die Leistungsfähigkeit und Lebensdauer Ihrer Batteriezellen in kürzerer Zeit

Profitieren Sie von moderner Messtechnik und einem erfahrenen Team

Messtechnik-Dienstleistungen
Batt-TDS

Batt-TDS von ystral

YSTRAL Batt-TDS Misch- und Dispergiermaschine

Boosten Sie Ihren Batterie-Slurry-Prozess

Dispergierer
Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

Revolutioniert künstliche Intelligenz die Chemie?

Verwandte Inhalte finden Sie in den Themenwelten

Themenwelt Batterietechnik

Die Themenwelt Batterietechnik bündelt relevantes Wissen in einzigartiger Weise. Hier finden Sie alles über Anbieter und deren Produkte, Webinare, Whitepaper, Kataloge und Broschüren.

35+ Produkte
150+ Unternehmen
40+ White Paper
25+ Broschüren
Themenwelt anzeigen
Themenwelt Batterietechnik

Themenwelt Batterietechnik

Die Themenwelt Batterietechnik bündelt relevantes Wissen in einzigartiger Weise. Hier finden Sie alles über Anbieter und deren Produkte, Webinare, Whitepaper, Kataloge und Broschüren.

35+ Produkte
150+ Unternehmen
40+ White Paper
25+ Broschüren

Themenwelt Spektroskopie

Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!

50+ Produkte
30+ White Paper
40+ Broschüren
Themenwelt anzeigen
Themenwelt Spektroskopie

Themenwelt Spektroskopie

Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!

50+ Produkte
30+ White Paper
40+ Broschüren