Terahertzstrahlen verraten Elektronen-Kristalle

Wenn sich Elektronen in hauchdünnen Materialien zum Kristallgitter anordnen, lässt sich dies mit Terahertzstrahlen nachweisen

07.02.2022 - Deutschland

Terahertz-Strahlung eignet sich dazu, zweidimensionale Kristalle nachzuweisen, die aus Elektronen bestehen statt aus Atomen. Das zeigen Modellrechnungen der Marburger Physiker Dr. Samuel Brem und Professor Dr. Ermin Malic.

Samuel Brem

Wenn sich Elektronen in hauchdünnen Materialien zum Kristallgitter anordnen, lässt sich dies mit Terahertzstrahlen nachweisen.

Kristalle müssen nicht aus Atomen bestehen – auch Elektronen können Kristalle bilden, wenn sie sich in einem regelmäßigen Gitter anordnen. Das ist bereits in hauchdünnen Halbleitern gelungen, die nur eine Atomlage dick sind. „Es handelt sich um eine exotische Quantenphase der Materie“, legt Malic dar. „Solche Wigner-Kristalle in atomdünnen Nanomaterialien sind ein heißes Thema in der aktuellen Forschung.“

Aber wie lässt sich überhaupt feststellen, ob ein Wigner-Kristall vorliegt oder nicht? Bislang erbrachte die Wissenschaft hierfür eher indirekte Nachweise. „Ein direkter, zuverlässiger und schlüssiger experimenteller Beweis für den Wigner-Kristall konnte bisher jedoch nicht erbracht werden“, erklärt Samuel Brem.

Genau hier setzen die beiden Marburger Physiker mit ihrer Studie an. Sie schlagen vor, Terahertz-Strahlung für den Nachweis zu nutzen. Dabei handelt es sich um Licht, dessen Wellenlängen im Bereich zwischen Infrarot und Mikrowellen liegen. Malic und Brem entwickeln in ihrem Fachaufsatz ein theoretisches Modell, um einerseits die Beschaffenheit und die optischen Eigenschaften des Wigner-Kristalls zu beschreiben; andererseits dient die Theorie dazu, die Form des erhaltenen Terahertz-Spektrums zu analysieren.

„Unsere Berechnungen zeigen, dass das Antwortspektrum von einschichtigen Wigner-Kristallen auf eine Terahertz-Bestrahlung als eindeutiger Fingerabdruck verwendet werden kann“, berichten die Autoren. Malic und Brem sagen das Auftreten einer Reihe von Terahertz-Resonanzen voraus, die verschiedene atomar dünne Materialien kennzeichnen; „unsere Ergebnisse lassen sich auf ein beliebiges zweidimensionales System verallgemeinern“, schlussfolgern die Marburger Physiker.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Alle FT-IR-Spektrometer Hersteller