Nanokriställchen mit Lichtenergie-Speicher beflügeln chemische Reaktionen
Geringe Toxizität, hohe Leistung: ZnSe/ZnS-Quantenpunkte als Photokatalysatoren
Computer-generated image
Quantenpunkte sind feinst verteilte nanoskopische Kristalle anorganischer Halbleiter. Sie absorbieren stark in einem justierbaren Spektralbereich und lassen sich leicht recyceln. Bisherige photokatalytische Quantenpunkte basieren allerdings fast ausschließlich auf den hochtoxischen Elementen Cadmium und Blei – neben ihrer begrenzten Effizienz der Haupthinderungsgrund für einen breiten Einsatz.
Das Forschungsteam um Kaifeng Wu (Chinesische Akademie der Wissenschaften) stellt jetzt neuartige Quantenpunkte mit sehr geringer Toxizität und sehr hoher Leistungsfähigkeit vor. Angeregt werden sie mit kommerziellen blauen LEDs – das sonst meist übliche UV-Licht ist nicht nötig. Erfolgsgeheimnis sind ihr Kern-Schale-Aufbau sowie variable Beschichtungen als „Speicher“ für die Lichtenergie.
Der Kern der nur wenige Nanometer großen Quantenpunkte besteht aus Zinkselenid (ZnSe) und ist von einer dünnen Schale aus Zinksulfid (ZnS) umgeben. Blaues Licht bringt das Zinkselenid in einen angeregten Zustand, in dem es leicht Elektronen abgeben kann. Die Schale verhindert, dass diese Elektronen durch sogenannte Defekte wieder eingefangen werden.
Das Team bestückte die Oberfläche der Schale mit speziellen Liganden (Benzophenon), die die Elektronen aus den Quantenpunkten „absaugen“, speichern und für organische Reaktionen zur Verfügung stellen. Beispielsweise konnte das Team so reduktive Dehalogenierungen von Arylchloriden und Additiv-freie Polymerisierungen von Acrylaten möglich machen – wichtige Reaktionen, die mit herkömmlichen Photokatalysatoren nur schlecht oder gar nicht ablaufen.
Eine zweite Variante entstand durch Beschichtung mit anderen Liganden (Biphenyl), die direkt Energie von den angeregten Quantenpunkten aufnehmen können. Dabei werden sie in einen langlebigen, energiereichen sog. Triplett-Zustand angeregt. Die so „gespeicherte“ Triplett-Energie kann auf bestimmte organische Moleküle übertragen werden, die dann ebenfalls in einen Triplett-Zustand gelangen. In diesem Zustand können sie chemische Reaktionen eingehen, die in ihrem Grundzustand nicht möglich sind. Demonstrationsbeispiele waren [2+2]-Homo-Cycloadditionen von Styrol und Cycloadditionen von Carbonylen mit Alkenen. Dabei entstehen Vierringe (Cyclobutane bzw. Oxetane): Substanzen, die z.B. wichtige Ausgangspunkte für die Wirkstoffentwicklung darstellen.
Originalveröffentlichung
Meistgelesene News
Originalveröffentlichung
Dr. Chengming Nie, Xuyang Lin, Guohui Zhao, Prof. Dr. Kaifeng Wu; Low-Toxicity ZnSe/ZnS Quantum Dots as Potent Photoreductants and Triplet Sensitizers for Organic Transformations; Angewandte Chemie International Edition; 2022
Themen
Organisationen
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für die chemische Industrie, Analytik, Labor und Prozess bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.