Neue Forschergruppe sucht unter Konstanzer Leitung nach einer Theorie der Glasbildung

Förderung durch die Deutsche Forschungsgemeinschaft (DFG) in Höhe von drei Millionen Euro

27.05.2010 - Deutschland

Glas zählt zu den ältesten Materialien, die von Menschen hergestellt werden. Dennoch ist es der Materialwissenschaft trotz intensiver Forschung bis heute nicht gelungen, die molekulare Struktur von Glas eindeutig zu bestimmen.

Der Konstanzer Physiker Prof. Matthias Fuchs ist ab 1. Juni 2010 Sprecher einer neuen Forschergruppe, die unter dem Titel „Nonlinear Response to Probe Vitrification“ an acht Forschungsstandorten untersucht, was bei der Glasbildung genau passiert. Das von der Deutschen Forschungsgemeinschaft (DFG) zunächst für drei Jahre finanzierte Forschungskonsortium wird zehn Doktorandenstellen einrichten.

Wirft man im Mikroskop einen Blick auf seine molekulare Struktur, sieht Glas aus wie eine Flüssigkeit, bei längerer Beobachtung stellt sich heraus, dass es nicht fließt wie eine gewöhnliche Flüssigkeit. Es ist bislang noch nicht gelungen, ein Modell zu formulieren, das diesem flüssigen Festkörper Glas entspricht. Glas ist, anders als ein Gas oder ein Kristall, ein „ungeordneter Festkörper“, der als solcher wissenschaftlich noch nicht verstanden wird.

Zwei Themen der Materialwissenschaft werden in der neuen Forschergruppe, deren Mitglieder aus der Physik und Chemie kommen, kombiniert. Zum einen soll der Prozess der Glasbildung untersucht werden, die Erstarrung der Flüssigkeit in einem ungeordneten Festkörper. Zum anderen soll erforscht werden, wie sich Glas verhält, wenn es durch äußere Kräfte aus dem thermischen Gleichgewicht gebracht wird, aus seinem festen Zustand also. Schließlich - und das ist das Neue an dem Ansatz - will die Forschergruppe durch die Kombination beider Sichtweisen einen neuen Blickwinkel erlangen. „Diese beiden Aspekte führen wir zusammen, weil wir glauben, dass wir verstehen können, wie das Glas erstarrt, wenn wir es durch starke externe Kräfte zum Fließen bringen“, so Matthias Fuchs.

Wobei Glas nicht gleich Glas ist. Gewöhnliches, silikatisches Fensterglas spielt in einem Projekt, in dem die Leitfähigkeit von verunreinigten Gläsern untersucht wird, auch ein Rolle. Besonders untersucht werden allerdings metallische Gläser, das heißt, metallische Legierungen, die nicht wie gewöhnliches Metall in einem Kristall erstarren, sondern den ungeordneten Glaszustand beibehalten. Sie sind nicht spröde wie normales Glas, das zerbricht, sondern verformbar. Eine weitere interessante Klasse von Gläsern liefern kolloidale Dispersionen, Lösungen, die Gläser bilden können, zum Beispiel Farben, die im Eimer fest sind, aber flüssig werden, wenn man darüber streicht.

Die Leitfähigkeit von Glas, seine elastischen Eigenschaften und seine Fließbereitschaft aufgrund externer Kräfte sind die drei Bereiche, in denen die Forschergruppe ihre Untersuchungen anstellt. Auf letzterem Gebiet forscht Matthias Fuchs selbst, unterstützt von Dr. Thomas Voigtmann, der im Konstanzer Zukunftskolleg eine eigene Nachwuchsgruppe leitet. Zwar betreibt das Konsortium Grundlagenforschung, was aber auch bedeuten kann, dass bereits in Verwendung befindliche Materialien durch seine Resultate verbessert werden können. Dazu gehören die elastischen Eigenschaften der metallischen Gläser, die beispielsweise für Gelenkimplantate verwendet werden, die Ionenleitfähigkeit von Glas, das für Batterien eingesetzt werden soll, oder eben die Streichfähigkeit von Farben.

Die erste Bewilligung durch die DFG erstreckt sich über drei Jahre und ist mit rund drei Millionen Euro Förderung verbunden. Eine Verlängerung von weiteren drei Jahren und noch einmal zwei Jahren ist möglich. Neben Konstanz sind Göttingen, Marburg, Münster, Köln, Erlangen, Augsburg, und Düsseldorf mit Projekten beteiligt.

Prof. Matthias Fuchs leitet seit 2004 die Arbeitsgruppe „Theorie der weichen Materie“ an der Universität Konstanz. Bevor er als Lehrstuhlvertretung von Prof. Rudolf Klein an den Bodensee kam, war Fuchs als Heisenberg-Stipendiat an der University of Edinburgh in Schottland und am Institut Charles Sadron der Université de Strasbourg. Habilitation und Promotion erfolgten an der Technischen Universität München.

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

Rotating Ring Disk Elektrode Rotator

Rotating Ring Disk Elektrode Rotator von C3 Prozess- und Analysentechnik

Präzise Rotation und einfacher Elektrodenwechsel - Entdecken Sie das innovative Rotator-System!

rotierende Scheibenelektroden
Elektrochemische Messzellen und Elektroden

Elektrochemische Messzellen und Elektroden von C3 Prozess- und Analysentechnik

Ersetzen Sie viele Messzellen mit unserer vielseitigen Voltammetriezelle für präzise Messergebnisse

elektrochemische Messzellen
Interface 1010

Interface 1010 von C3 Prozess- und Analysentechnik

Optimieren Sie Ihre elektrochemische Messungen für präzise Ergebnisse und vielfältige Anwendungsmöglichkeiten

Potentiostate
Reference 620

Reference 620 von C3 Prozess- und Analysentechnik

Potentiostat / Galvanostat / ZRA mit maximaler Empfindlichkeit und minimalem Rauschen für wegweisende Forschung

elektrochemische Systeme
Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...

Verwandte Inhalte finden Sie in den Themenwelten

Themenwelt Batterietechnik

Die Themenwelt Batterietechnik bündelt relevantes Wissen in einzigartiger Weise. Hier finden Sie alles über Anbieter und deren Produkte, Webinare, Whitepaper, Kataloge und Broschüren.

30+ Produkte
150+ Unternehmen
35+ White Paper
20+ Broschüren
Themenwelt anzeigen
Themenwelt Batterietechnik

Themenwelt Batterietechnik

Die Themenwelt Batterietechnik bündelt relevantes Wissen in einzigartiger Weise. Hier finden Sie alles über Anbieter und deren Produkte, Webinare, Whitepaper, Kataloge und Broschüren.

30+ Produkte
150+ Unternehmen
35+ White Paper
20+ Broschüren