Materialwissenschaft: Wie molekulare Schlaufen die Struktur von Polymeren bestimmen
Erkenntnisse könnten dabei helfen, bestehende Werkstoffe zu verbessern oder diese ganz oder teilweise durch nachhaltigere Alternativen zu ersetzen
Wenn Materialien abkühlen, bilden sie auf der Ebene von Molekülen meist eine kristalline Struktur aus - alle Teilchen sind in einem fest geordneten Muster. "Bei der Entstehung von teilkristallinen Polymeren läuft der Prozess ähnlich ab, nur dass nicht alle Bereiche kristallisieren", sagt der Physiker Prof. Dr. Thomas Thurn-Albrecht von der MLU. Stattdessen gibt es auch sogenannte amorphe Bereiche, die nach dem Abkühlen keine geordnete Struktur haben. Hier finden sich Schlaufen, die miteinander verflochten sind. In teilkristallinen Polymeren wechseln sich geordnete und ungeordnete Schichten auf der Ebene weniger Nanometer immer wieder ab. Durch diese spezielle Struktur erhalten sie auch ihre besonderen Eigenschaften: Sie sind flexibel und elastisch, aber dennoch relativ robust. Das macht sie vor allem als Verpackungs- und Strukturmaterialien interessant.
Die Eigenschaften von teilkristallinen Polymeren hängen maßgeblich von zwei Faktoren ab: von der Dicke der jeweiligen Schichten und davon, wie stark die Ketten in den amorphen Bereichen miteinander verflochten sind. Während man laut Thurn-Albrecht schon relativ viel darüber weiß, welche Faktoren die Kristalldicke beeinflussen, ist das Wissen über die amorphen Schichten noch relativ begrenzt. Sein Team untersuchte gemeinsam mit der Gruppe von Prof. Dr. Kay Saalwächter von der MLU den Prozess der Kristallbildung speziell für diese Schichten. Anhand ihrer Messungen an einem Modellpolymer fanden die Physikerinnen und Physiker heraus, dass die Dicke der amorphen Schichten maßgeblich durch ihre Verschlaufungen bestimmt wird. Die Forschenden entwickelten zudem ein einfaches Modell, um diesen Zusammenhang zu beschreiben.
"Wir gehen davon aus, dass unser Modell auf viele verschiedene Polymere übertragbar ist, also auch auf solche, die aktuell weniger im Gebrauch sind", so Thurn-Albrecht. Die neuen Erkenntnisse könnten dabei helfen, bestehende Werkstoffe zu verbessern oder diese ganz oder zumindest teilweise durch nachhaltigere Alternativen zu ersetzen.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Diese Produkte könnten Sie interessieren
HYPERION II von Bruker
FT-IR und IR-Laser-Imaging (QCL) Mikroskop für Forschung und Entwicklung
Untersuchen Sie makroskopische Proben mit mikroskopischer Auflösung (5 µm) in sekundenschnelle
Eclipse von Wyatt Technology
FFF-MALS System zur Trennung und Charakterisierung von Makromolekülen und Nanopartikeln
Neuestes FFF-MALS-System entwickelt für höchste Benutzerfreundlichkeit, Robustheit und Datenqualität
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für die chemische Industrie, Analytik, Labor und Prozess bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.