Europäischer Forschungsrat fördert exzellente junge Forscher der Universität Heidelberg
Oliver Trapp (Jahrgang 1973) studierte Chemie an der Universität Tübingen, an der er 2001 promoviert wurde. Nach einem Forschungsaufenthalt als Postdoktorand an der Stanford University in Kalifornien (USA) übernahm er 2004 mit Förderung der Deutschen Forschungsgemeinschaft (DFG) die Leitung einer Emmy Noether-Nachwuchsgruppe am Max-Planck-Institut für Kohlenforschung. 2008 wurde er auf eine Professur an das Organisch-Chemische Institut der Universität Heidelberg berufen. Seine Habilitation an der Ruhr-Universität Bochum konnte der Wissenschaftler, der unter anderem mit dem Heinz Maier-Leibnitz-Preis der DFG ausgezeichnet wurde, im Jahr 2009 abschließen.
In seinen Forschungsarbeiten beschäftigt sich der Chemiker mit der Entwicklung innovativer Methoden zum effizienten Screening von Katalysatoren und der mechanistischen Aufklärung auf molekularer Ebene. Dafür hat Prof. Trapp ein neues Verfahren realisiert, das die traditionelle chemische Analyse mit moderner Informationstechnologie verbindet. Die sogenannte Multiplexing-Gaschromatographie ist dabei über die Katalyseforschung hinaus auch für die Analytik komplexer Stoffgemische von besonderer Bedeutung. Im Mittelpunkt seiner aktuellen Arbeiten zum Thema „Self-Amplifying Stereodynamic Catalysts in Enantioselective Catalysis AMPCAT“, die jetzt aus Mitteln des ERC Starting Grant gefördert werden, stehen das Design und die Untersuchung neuartiger dynamisch schaltbarer Katalysatoren, die sich gezielt an die gewünschten Zielmoleküle anpassen und dabei deren Bildung mit hoher Selektivität katalysieren.
Stephanie Hansmann-Menzemer (Jahrgang 1975) absolvierte ein Studium der Mathematik und der Physik an der Technischen Universität Karlsruhe und der Université Joseph Fourier in Grenoble (Frankreich). Im Jahr 2003 wurde sie mit einer Arbeit auf dem Gebiet der experimentellen Teilchenphysik in Karlsruhe promoviert. Als Gastwissenschaftlerin war sie bis 2005 am Massachusetts Institute of Technology in Cambridge (USA) tätig. Anschließend forschte sie als Postdoktorandin an der Universidad de Cantabria in Spanien, bevor sie 2006 Leiterin einer DFG-geförderten Emmy Noether-Nachwuchsgruppe an der Universität Heidelberg wurde. Im Jahr 2009 erhielt Stephanie Hansmann-Menzemer eine Professur am Physikalischen Institut der Ruperto Carola.
Die Heidelberger Wissenschaftlerin ist an den Forschungsarbeiten des Large Hadron Colliders (LHC) in Genf beteiligt. Am Teilchenbeschleuniger des Europäischen Forschungszentrums CERN ist sie in das Experiment LHCb eingebunden; damit wollen die Wissenschaftler herausfinden, warum das Universum hauptsächlich aus Materie und nicht aus Antimaterie besteht. Sie führen dazu Präzisionsmessungen an beauty-Hadronen durch. Dabei handelt es sich um Teilchen, die das zweitschwerste Quark, das sogenannte beauty-Quark, enthalten. Die Forschungsarbeiten „Measurement of CP violation in the Bs system at LHCb“ von Prof. Hansmann-Menzemer werden jetzt aus Mitteln des ERC Starting Grant gefördert. Dabei geht es insbesondere um die Messung von Asymmetrien, die in der Umwandlung von Bs-Teilchen in ihre Antiteilchen entstehen. Der Nachweis dieser Asymmetrie wäre der erste Hinweis auf theoretisch vorhergesagte, aber bisher noch nicht experimentell nachgewiesene neue Teilchen am LHC.
Weitere News aus dem Ressort Wissenschaft
Meistgelesene News
Weitere News von unseren anderen Portalen
Verwandte Inhalte finden Sie in den Themenwelten
Themenwelt Gaschromatographie
Die Gaschromatographie ist eine essentielle Methode in der analytischen Chemie zur Trennung und Analyse von flüchtigen Verbindungen. Durch ihre hohe Auflösung und Empfindlichkeit hat sie sich in Bereichen wie der Umweltanalytik, der Lebensmittelchemie oder der forensischen Wissenschaft fest etabliert. Die GC liefert präzise und zuverlässige Ergebnisse und ermöglicht tiefe Einblicke in die chemische Zusammensetzung von Proben.
Themenwelt Gaschromatographie
Die Gaschromatographie ist eine essentielle Methode in der analytischen Chemie zur Trennung und Analyse von flüchtigen Verbindungen. Durch ihre hohe Auflösung und Empfindlichkeit hat sie sich in Bereichen wie der Umweltanalytik, der Lebensmittelchemie oder der forensischen Wissenschaft fest etabliert. Die GC liefert präzise und zuverlässige Ergebnisse und ermöglicht tiefe Einblicke in die chemische Zusammensetzung von Proben.