Leuchtkugeln auf Wanderschaft
Nanopartikel-Testkit zeigt, wie sich verschieden große Nanopartikel in Tumorgewebe verteilen
Damit Nanopartikel-basierte biomedizinische Methoden klappen, müssen die Nanopartikel die optimale Größe haben. Zu Studienzwecken wäre es daher wünschenswert, das Verhalten verschieden großer Partikel im selben Tumor in vivo simultan zu verfolgen. Dazu werden chemisch vergleichbare Partikel in verschiedenen Größen benötigt, die innerhalb ihrer Gruppe einheitlich groß und gleich geformt sind. Die Partikel müssen sich zudem simultan nachweisen und unterscheiden lassen. Sie müssen dabei biokompatibel sein, dürfen nicht miteinander verklumpen oder Proteine adsorbieren. Eine große Herausforderung, die nun gemeistert wurde.
Die Forscher haben einen Satz Nanopartikel in verschiedenen Größen entwickelt, deren Detektion über fluoreszierende Quantenpunkte erfolgt. Quantenpunkte sind Halbleiter-Strukturen an der Schwelle zwischen makroskopischen Festkörpern und der quantenmechanischen Nanowelt. Über die Wahl ihrer Größe lassen sich gezielt Quantenpunkte herstellen, die bei verschiedenen Wellenlängen fluoreszieren – und sich auf diese Weise simultan detektieren und unterscheiden lassen.
Um Nanopartikel unterschiedlicher Größen herzustellen, beschichteten die Wissenschaftler Cadmiumselenid/Cadmiumsulfid-Quantenpunkte mit polymeren Liganden bzw. mit Siliciumdioxid und Polyethylenglycol. Partikel oberhalb 100 nm Durchmesser erzielten sie, indem sie die Quantenpunkte an vorgefertigte Siliciumdioxid-Partikel knüpften und ebenfalls mit Polyethylenglycol beschichteten. Für jede Größenklasse wurden Quantenpunkte gewählt, die Licht einer anderen Wellenlänge abstrahlen.
Die Forscher injizierten krebskranken Mäusen intravenös eine Mischung aus Partikeln mit 12, 60 und 125 nm Durchmesser. Fluoreszenzmikroskopisch wurde das Eindringen ins Tumorgewebe in vivo verfolgt. Während die 12-nm-Partikel leicht von den Blutgefäßen ins Gewebe übertraten und sich dort rasch verteilten, gelangten die 60-nm-Partikel zwar durch die Wand der Adern, blieben dann aber in einem Abstand von 10 µm um die Gefäßwand und drangen nicht weiter ins Gewebe ein. Die 125-nm-Partikel überwanden die Gefäßwände dagegen so gut wie gar nicht.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Diese Produkte könnten Sie interessieren
NANOPHOX CS von Sympatec
Partikelgrößenanalyse im Nanobereich: Hohe Konzentrationen problemlos analysieren
Zuverlässige Ergebnisse ohne aufwändige Probenvorbereitung
DynaPro Plate Reader III von Wyatt Technology
Screening von Biopharmazeutika und anderen Proteinen mit automatisierter dynamischer Lichtstreuung
Hochdurchsatz-DLS/SLS-Messungen von Lead Discovery bis Qualitätskontrolle
Eclipse von Wyatt Technology
FFF-MALS System zur Trennung und Charakterisierung von Makromolekülen und Nanopartikeln
Neuestes FFF-MALS-System entwickelt für höchste Benutzerfreundlichkeit, Robustheit und Datenqualität
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für die chemische Industrie, Analytik, Labor und Prozess bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.