Magnetische Kühlung im Aufwind

31.05.2012 - Deutschland

Forscher vom Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden schlagen magnetische Formgedächtnislegierungen aus Nickel, Mangan, Indium und Kobalt als Material für magnetische Kühlschränke vor. Ausschlaggebend für die Eignung dieses Materials sind nicht nur die magnetischen Eigenschaften, sondern die großen Temperaturänderungen, die durch den strukturellen Umbau des Kristallgitters entstehen. Diese in der Fachzeitschrift Nature Materials veröffentlichten Ergebnisse eröffnen ganz neue Möglichkeiten für die magnetische Kühlung.

IFW Dresden

Mikroskopische Aufnahme der Zwillingsstruktur in der Nickel-Mangan-Legierung mit Indium und Kobalt.

Weltweit wird ein großer Teil der produzierten Elektroenergie für Kühlzwecke verbraucht. Die effizienteste dafür etablierte Technik, die Kompressionskühlung, hat einen Wirkungsgrad von maximal 45%. Einen wesentlich besseren Wirkungsgrad weisen Kühlgeräte auf, die auf dem magnetokalorischen Effekt beruhen. Dieser funktioniert so: Wird ein konventionelles magnetokalorisches Material in ein Magnetfeld gebracht, richten sich seine zunächst ungeordneten magnetischen Momente parallel zum angelegten Feld aus. Dadurch erhöht sich der magnetische Ordnungszustand. Die Zunahme der magnetischen Ordnung wird bei geeigneter Prozessführung dadurch kompensiert, dass sich die Schwingungen der Atome auf ihren Gitterplätzen verstärken, was zu einer Temperaturerhöhung führt.

Kühlt man das erwärmte Material im Magnetfeld wieder auf die Ausgangstemperatur ab und schaltet dann das Magnetfeld aus, findet der umgekehrte Prozess statt und das Material kühlt sich weiter ab und erreicht eine nun einige Grad Celsius tiefere Temperatur als zu Beginn des Zyklus. In diesem Zustand kann das Material Wärme aufnehmen und somit als Kühlmittel dienen.

Deutlich größere magnetokalorische Effekte lassen sich erzielen, wenn die Änderung der magnetischen Ordnung von einem strukturellen Phasenübergang begleitet wird. Die Dresdner Forscher untersuchten eine Nickel-Mangan-Legierung näher, bei der ein umgekehrter magnetokalorischer Effekt auftritt. Das bedeutet, dass die magnetische Ausrichtung eine moderate Temperaturerhöhung zur Folge hat, während die strukturelle Umwandlung zu einer starken Abkühlung des Materials führt. Die Summe dieser entgegengesetzt wirkenden Effekte ergibt eine Kühlung des Materials bereits beim Anlegen des Magnetfeldes. Eine Möglichkeit, zu effektiveren magnetischen Kühlsystemen zu gelangen, sehen sie darin, diesen strukturellen Beitrag zum magnetokalorischen Effekt durch die optimale Wahl der chemischenZusammensetzung zu maximieren. Hierdurch wird eine Temperaturänderung von bis zu 6 Grad bei moderaten Magnetfeldern von 2 Tesla erreicht, wobei die strukturellen Änderungen im Kristallgitter am meisten dazu beitragen. Aus theoretischen und modellhaften Betrachtungen leiten sie ab, dass folgende Bedingungen für hohe Temperaturänderungen in magnetokalorischen Materialien günstig sind: eine vollständige Phasenumwandlung in einem engen Temperaturintervall und eine optimale Feldabhängigkeit der Übergangstemperatur.

Außerdem rückten die Forscher einem weiteren Problem in der magnetokalorischen Anwendung der Nickel-Mangan-Legierungen auf den Leib: Die erforderlichen hohen Temperaturänderungen in diesen Legierungen werden bisher nur im ersten Zyklus erreicht und nehmen in den folgenden Zyklen drastisch ab. Sie fanden heraus, dass das Anlegen eines äußeren Drucks, das zyklische Verhalten deutlich verbessert, und dass die genaue Einstellung der kristallografischen Gitterparameter und das Stapeln von Schichten bestimmter magnetokalorischer Legierungen den Arbeitsbereich, das heißt das Kühlfenster, signifikant erweitern.

Originalveröffentlichung

Jian Liu, Tino Gottschall, Konstantin P. Skokov, James D. Moore, Oliver Gutfleisch; “Giant magnetocaloric effect driven by structural transitions”; Nature Materials, Advance Online Publication (AOP

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

Chromatographie-Kühlschränke der Firma tritec®

Chromatographie-Kühlschränke der Firma tritec® von tritec für Labortechnik und Umweltsimulation

Energieeffiziente Chromatographie-Kühlschränke für präzise Temperaturkontrolle

Sichere Lagerung Ihrer HPLC-Systeme bei -5 °C bis 20 °C mit modernem Touchscreen-Display

Chromatographie Kühlschränke
B 35

B 35 von FRYKA Kältetechnik

Ultra-Tiefkühlbox für arktische Kälte - direkt am Laborarbeitsplatz

Ihre Proben - griffbereit durch dezentrale Lagerung und sicher gekühlt bei bis zu - 85 °C

Gefrierschränke
Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

Revolutioniert künstliche Intelligenz die Chemie?