Energietechnik-Prozesse genauer simulieren
Computersimulationen gehören zum Alltag in den Ingenieurwissenschaften. Um Prozesse realitätsgetreu am PC nachzubilden, braucht es komplexe mathematische Modelle. Das Team um RUB-Ingenieur Dr. Harald Kruggel-Emden vom Lehrstuhl für Energieanlagen und Energieprozesstechnik erhält für die kommenden fünf Jahre rund 1,59 Millionen Euro Fördermittel der Deutschen Forschungsgemeinschaft zum Aufbau einer Emmy Noether-Nachwuchsgruppe. Ziel der Forscher ist es, die Modelle hinter der sogenannten Diskreten Elemente-Methode zu verbessern. „Mit dieser Methode kann man zum Beispiel Prozesse zur Nutzung regenerativer Energien simulieren und optimieren“, erklärt Dr. Kruggel-Emden. „Das ermöglicht letztendlich bessere Produktqualität bei weniger Kosten und geringerem Energieeinsatz.“

Simulation von durchströmten Systemen: RUB-Ingenieure simulieren durchströmte Systeme mit unterschiedlicher Detailtiefe. Die Farben in dem wenig detaillierten System (links) repräsentieren die Partikelbeladung je Gasvolumen (rot: viele Partikel/Volumen; blau: wenig Partikel/Volumen). In detaillierteren Simulationen (rechts) beziehen die Forscher mit ein, wie das Gas die Partikel umströmt (Pfeile unten rechts).
© Harald Kruggel-Emden
Partikel mit beliebigen Formen simulieren
Mit der Diskreten Elemente-Methode beschreiben Wissenschaftler das Verhalten von Partikelsystemen wie Holzpellets oder Kohle. Oft kombinieren sie die Methode mit „Computational Fluid Dynamics“, einem Verfahren zur Simulation von Gasströmen. Die Kombination ist besonders hilfreich, um sogenannte fluidisierte Partikelsysteme zu beschreiben, also Systeme, in denen sich Partikel frei in Gasen bewegen. Herkömmliche Modelle idealisieren die Form der Partikel, indem sie annehmen, dass sie kugelig sind. In Wirklichkeit können die Teilchen jedoch viele Formen haben. Die RUB-Forscher möchten das Modell nun so erweitern, dass sie Partikel mit beliebiger Gestalt simulieren können.
Der Knackpunkt: Fluidmechanische Kräfte und Wärmeübertragung
Schon jetzt können mechanische Interaktionen wie Kollisionen der Partikel auch für nicht kugelige Teilchen beschrieben werden. Aber die Simulation fluidmechanischer Kräfte ist bislang nur für kugelige Teilchen möglich. Eine fluidmechanische Kraft wäre zum Beispiel die Widerstandskraft. „Wenn man mit dem Auto fährt, dann erzeugt die Luft einen Widerstand“, sagt Dr. Kruggel-Emden. „Aber auch ein stehendes Auto würde durch den Wind eine Widerstandskraft erfahren.“ Die meisten technischen Systeme sind durchströmt, so dass Widerstandskräfte berücksichtigt werden müssen – genau das sollen die neuen Modelle können. Zusätzlich wollen die RUB-Wissenschaftler die Wärmeübertragung in Systemen mit komplex geformten Partikeln abbilden. Das würde in Zukunft eine bessere Beschreibung von Prozessen der Energietechnik erlauben. Das Projekt trägt den Titel „Mischung/Segregation und Wärmeübertragung in fluidisierten Systemen der Energietechnik: Ein Beitrag zur Weiterentwicklung der gekoppelten CFD-Diskreten Elemente Methode für polydisperse Systeme komplexer Partikelgeometrie“.
Meistgelesene News
Weitere News aus dem Ressort Wissenschaft

Holen Sie sich die Chemie-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.