Werkstoffe für den Photonenfang
Brennstoff aus Wasser zu gewinnen, ist eine bestechender Gedanke, doch die Trennung in Wasser- und Sauerstoff kostet zunächst Energie. Die Kraftstoffausbeute wächst, wenn beim Aufspalten die Sonne als Energiequelle zugeschaltet wird, und zwar umso mehr, je besser Katalysatoren die Strahlung verwerten. Die Arbeitsgruppe von Prof. Dr. Dirk Guldi, Lehrstuhl für Physikalische Chemie I der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), ist maßgeblich am internationalen Projekt „Carinhyph“ beteiligt, das besonders geeignete Materialien für diesen Zweck entwickelt. Die Europäische Kommission hat dazu finanzielle Mittel in Höhe von insgesamt 2,88 Millionen Euro bewilligt.

Schematische Darstellung einer Ladungsübertragung an Hybridmaterialien: Die anorganischen Bausteine in den Nanokohlenstoffen verbessern den Transport elektrischer Ladung und somit die photokatalytische Leistung.
Lehrstuhl für Physikalische Chemie I der FAU
Die Förderung wird aus dem 7. Forschungsrahmenprogramm der Europäischen Union finanziert. Das Projekt mit der vollständigen Bezeichnung „Bottom-up fabrication of nano carbon-inorganic hybrid materials for photocatalytic hydrogen production“ ist auf drei Jahre angelegt. Das Erlanger Department Chemie und Pharmazie kooperiert dabei auf internationaler Ebene mit sechs wissenschaftlichen Partnerinstitutionen.
Die Konstrukteure der jüngsten Generation von Katalysatoren verzichten auf teure Edelmetalle und bauen vermehrt auf Kohlenstoff. Die Strukturen jedoch werden zunehmend verfeinert. Als Träger werden beispielsweise Nanoröhrchen oder der zweidimensionale Kristall Graphen gewählt. Stufe für Stufe, in hierarchischer Ordnung, entstehen aus dem Ausgangsmaterial Hybride, Kombinationen von organischen und anorganischen Bausteinen im Nanoformat. Die „Fremdlinge“ im Kohlenstoff-Gerüst verändern die Eigenschaften des Werkstoffs, verbessern etwa den Transport elektrischer Ladung und somit die photokatalytische Leistung. Um zu testen, wie sie funktionieren, sollen die Hybride außerdem in makroskopische Strukturen eingebaut werden.
Meistgelesene News
Organisationen

Holen Sie sich die Chemie-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.