Natürliches Kanalprotein in künstliche Membran eingebaut
Grafik aus: X. Zhang et al., Sci. Rep. 3, 2196; doi: 10.1038/srep02196, Nature Publishing Group, reproduced with permissio
Künstliche Doppelschichtmembran, die auf einer Goldoberfläche verankert ist und in die das natürliche Kanalprotein eingelagert ist. Durch das Kanalprotein ist ein kontrollierter Ionentransport durch die Membran möglich.
In Zellen trennen Membranen verschiedene Bereiche voneinander ab. Diese Trennschichten sind aber nicht ganz undurchlässig: Spezielle Kanalproteine wirken zum Beispiel wie eine Schleuse, durch die ausgewählte Moleküle oder elektrisch geladene Teilchen die Membran passieren können.
Um diese Transportprozesse an einem einfachen Modell untersuchen zu können, haben Forscher am Departement Chemie der Universität Basel ein natürliches Kanalprotein (α-Hämolysin) in eine künstliche, doppelschichtige Membran eingebaut.
Dazu verankerten sie zunächst die synthetische Membran an einer Oberfläche aus Gold, wodurch eine flache Membranstruktur entstand. Im Vergleich zu freistehenden Membranen oder kugelförmigen Bläschen hat dies den Vorteil, dass die hier verwendete Membran mechanisch stabiler ist und vielfältiger eingesetzt werden kann. In die flache Membranstruktur konnten sie dann das Kanalprotein dicht gedrängt einbauen – bis zu 420 Kanalproteine auf einem Quadratmillimeter der Membran.
Praktische Anwendung als Biosensor
Die Funktionsfähigkeit des eingebauten Kanalproteins überprüften die Forscher um die Professoren Wolfgang Meier und Cornelia Palivan, indem sie eine elektrische Spannung an die künstliche Membran anlegten. Dabei wandern Ionen durch die ein bis zwei Nanometer breiten Kanäle des Proteins und leiten so den Strom über die Membran.
Mit dem neuen Membransystem gelang es, die Ionenwanderung präzise zu steuern und eine exakte Zahl von Ionen durch die Membran wandern zu lassen. So liessen sich zum Beispiel positiv geladene Ionen im ca. drei bis vier Nanometer messenden Zwischenraum zwischen Membran und Goldoberfläche anreichern, wodurch die angelegte elektrische Spannung kompensiert wurde.
Diesen Effekt könnte man für die Entwicklung von Biosensoren nutzen, die zur Untersuchung der Wechselwirkung von Wirkstoffen mit Proteinen eingesetzt werden können. Dadurch eröffnen sich vielfältige praktische Anwendungsmöglichkeiten in der pharmakologischen und biochemischen Forschung.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Meistgelesene News
Weitere News von unseren anderen Portalen
Verwandte Inhalte finden Sie in den Themenwelten
Themenwelt Sensortechnik
Die Sensortechnik hat die chemische Industrie revolutioniert, indem sie präzise, zeitnahe und zuverlässige Datenbereitstellung in einer Vielzahl von Prozessen ermöglicht. Vom Überwachen kritischer Parameter in Produktionslinien bis hin zur Früherkennung potenzieller Störungen oder Gefahren – Sensoren sind die stillen Wächter, die Qualität, Effizienz und Sicherheit gewährleisten.
Themenwelt Sensortechnik
Die Sensortechnik hat die chemische Industrie revolutioniert, indem sie präzise, zeitnahe und zuverlässige Datenbereitstellung in einer Vielzahl von Prozessen ermöglicht. Vom Überwachen kritischer Parameter in Produktionslinien bis hin zur Früherkennung potenzieller Störungen oder Gefahren – Sensoren sind die stillen Wächter, die Qualität, Effizienz und Sicherheit gewährleisten.