Warum ist Quecksilber bei Raumtemperatur flüssig?
Albert Einsteins spezielle Relativitätstheorie weist den Weg zur Lösung des Geheimnisses des Quecksilbers
„Quecksilber stellt mit seinen Eigenschaften die theoretische Chemie seit langem vor viele Rätsel. Sein Aggregatzustand ist unter Normalbedingungen stets flüssig, anders als bei anderen Metallen wie Zink, Gold oder Kupfer, denen viel Wärme zugefügt werden muss, bis sie schmelzen“, sagt der Physiker Dr. Michael Wormit, der am Interdisziplinären Zentrum für Wissenschaftliches Rechnen (IWR) der Universität Heidelberg auf dem Gebiet der Theoretischen Chemie forscht. „Quecksilber ähnelt in seinem Verhalten häufig eher einem Edelgas als einem Metall.“
Dass die Besonderheiten von Quecksilber ihre Ursache in Effekten der speziellen Relativitätstheorie haben, wird in der Forschung seit längerem vermutet, konnte aber bislang nicht quantitativ nachgewiesen werden. Mit dieser Theorie beschreibt Albert Einstein die Eigenschaften von sehr schnell bewegter Materie, die im Quecksilberatom in Form von 82 Elektronen auftritt. Das Quecksilberatom besitzt daher eine veränderte Elektronenstruktur gegenüber leichteren Atomen, bei denen solche Effekte eine geringere Rolle spielen. Dr. Wormit hat zusammen mit Dr. Florent Calvo (Université de Lyon, Frankreich), Dr. Elke Pahl und Prof. Dr. Peter Schwerdtfeger (beide Massey University, Auckland, Neuseeland) die atomare Struktur von Quecksilber bestehend aus dem Atomkern und den dazugehörigen Elektronen am Rechner modelliert. Dabei wurde die Wechselwirkung der Quecksilberatome bei unterschiedlichem Druck und bei verschiedenen Temperaturen mit Hilfe von Computersimulationen untersucht.
„Lange Zeit reichte die Rechnerkapazität für Simulationen und Berechnungen dieser Art einfach nicht aus“, erläutert der Heidelberger Wissenschaftler, der bei seinen Forschungen auch die sogenannte Monte-Carlo-Simulation eingesetzt hat. Dieses mathematische Verfahren aus der Stochastik basiert auf Zufallsexperimenten, die in einer sehr großen Anzahl durchgeführt werden. Die zugrundeliegenden Fragestellungen werden dabei mit Hilfe der Wahrscheinlichkeitstheorie auf numerischem Weg gelöst, da eine deterministische Berechnung numerisch nicht durchführbar ist.
„Mit unserem Forschungsansatz, der sich erstmals mit den entsprechenden Rechnerkapazitäten realisieren ließ, konnten wir zeigen, dass die relativistischen Effekte für die Simulation von Quecksilbermaterialien von entscheidender Bedeutung sind. Ohne diese Effekte läge der Schmelzpunkt von kristallinem, sprich festem Quecksilber um 105 Grad Celsius höher und es wäre bei Raumtemperatur nicht flüssig, sondern fest“, erklärt Michael Wormit.
Originalveröffentlichung
Meistgelesene News
Originalveröffentlichung
F. Calvo, E. Pahl, M. Wormit, P. Schwerdtfeger: Erklärung des niedrigen Schmelzpunkts von Quecksilber mit relativistischen Effekten, Angew. Chem. 2013, 125, 7731-7734
Themen
Organisationen
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für die chemische Industrie, Analytik, Labor und Prozess bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.