Mehr als elastisch: Organischer Kristall zeigt Superelastizität
Unter „Superelastizitat“, auch als „Pseudoelastizität“ bezeichnet, versteht man die Eigenschaft spezieller Materialien, nach beträchtlicher Verformung bei Entlastung in ihre Ausgangsform zurückzukehren. So lassen sich z.B. bestimmte Legierungen etwa zehnmal mehr dehnen als herkömmliche Federstahle, ohne bleibend verformt zu werden. Der Mechanismus ist ein anderer als bei der gewöhnlichen Elastizität gummiähnlicher Stoffe: Bei der Gummielastizität werden die Polymerketten durch eine Dehnung gestreckt, eine Stauchung ist nicht möglich. Bei superelatischen Materialien löst eine mechanische Spannung dagegen eine Änderung der Kristallstruktur aus – ohne dass einzelne Atome dabei ihre Plätze wechseln. Bei Entlastung kehren die Stoffe wieder in die alte Struktur zurück. Solche Materialien sind interessante Kandidaten für Werkstoffe mit „Formgedächtnis“, z.B. für „selbstreparierende“ Bauteile von Autos.
Auch mehr als 80 Jahre nach der ersten Entdeckung der Superelastizität war das Phänomen bisher auf Metalllegierungen und Keramiken beschränkt; für organische Materialien war es völlig unbekannt. Satoshi Takamizawa von der Yokohama City University hat jetzt erstmals Superelastizität bei einem organischen Kristall gefunden: Terephthalamid-Kristalle reagieren bereits bei erstaunlich geringer Krafteinwirkung superelastisch.
Unter Scherspannung auf eine bestimmte Kristallfläche wird der Kristall zunächst gebeugt, dann geht er an dieser Stelle in eine andere Kristallphase über. Je mehr Druck ausgeübt wird, desto weiter breitet diese sich entlang des Kristalls aus. Wenn die Spannung nachlässt, wandert die Phasengrenze zurück durch den Kristall, die ursprüngliche Struktur wird wiederhergestellt. Takamizawa und einer seiner Studenten konnten die superelastische Umformung 100 Mal wiederholen, ohne Anzeichen für eine Materialermüdung.
Der Kristall besteht aus einzelnen Schichten schräg angeordneter Terephthalamid-Moleküle (Schichtfolge AAAAA). Unter Scherspannung ändert sich der Winkel, in dem die Moleküle in den Schichten liegen, es entsteht eine Schichtfolge A’BA’BA‘B, die dichter gepackt ist. Zusammengehalten werden die Schichtung durch ein Netzwerk von Wasserstoffbrückenbindungen, die sich unter Druck lösen und bei der Phasenumwandlung anders arrangieren.
Mögliche Anwendungen organischer superelastischer Materialien sind beispielsweise Gelenke aus nur einem Bauteil und Elemente zur Dämpfung von Schwingungen. In der Medizintechnik könnten Implantate aus derartigen Materialien so verformt werden, dass sie sich leicht einführen lassen und dann an Ort und Stelle die gewünschte Form und Größe erreichen.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.