Hochwertige stoffliche Nutzung von Bioethanol
Viele Kunststoffe erlangen ihr Eigenschafts- und Verarbeitungsprofil erst durch den Zusatz von Additiven, von denen Weichmacher – chemisch im Wesentlichen aus Estern bestehend – die weitaus stärkste Klasse ausmachen. Im Zuge der Diskussion um die Endlichkeit des Rohöls, der Vermeidung des Klimawandels und der Nachhaltigkeit im Allgemeinen wird vermehrt nach Lösungen für die biobasierte Herstellung von Weichmachern gesucht. Bioethanol etwa eignet sich ebenso wie pflanzliche Fette und Öle für weitaus mehr als nur den Kraftstoff-Einsatz. Doch bisher ist deren stoffliche Verwendung für die Herstellung von Spezialprodukten bzw. eine Herstellung hochwertiger Brenn- oder Kraftstoffe wirtschaftlich noch nicht realisierbar.
Fraunhofer UMSICHT hat ein Verfahren entwickelt, das dies künftig ändern kann. Der Prozess macht höhere Alkohole mit drei bis zehn Kohlenstoffatomen (wie Butanol oder Hexanol) aus biobasierten kurzkettigen Alkoholen mit ein bzw. zwei Kohlenstoffatomen (Methanol, Ethanol) zugänglich. Reagieren die höheren Alkohole mit Säuren (Bernstein- oder Citronensäure), die durch Fermentation hergestellt wurden, entstehen als neue Verbindungen Ester, die zu 100 Prozent biobasiert sind. Der Markt für diese organischen Verbindungen, die unter anderem als Weichmacher in Polymeren verwendet werden können, umfasst jährlich etwa 20 Millionen Tonnen.
Herstellungskosten biobasierter Ester werden minimiert
In einem vorangegangenen Projekt bei Fraunhofer UMSICHT wurden bereits mit einem speziellen Katalysator in einem kontinuierlich betriebenen Prozess Kettenaufbaureaktionen wie etwa die Dimerisierung (Reaktion von zwei Molekülen) von Ethanol zu Butanol durchgeführt. Im weiteren Reaktionsverlauf entstehen durch Reaktionen von Ethanol mit neu gebildeten Alkoholen wie Butanol noch höhermolekulare Alkohole (z.B. Hexanol oder Octanol). Durch Variation der Stoffmengenverhältnisse werden die Produktverhältnisse stark beeinflusst. So werden bei der Verwendung bestimmter Mischungen Alkohole mit einer ungeraden Anzahl an Kohlenstoffatomen gebildet, und die Anzahl der kurzkettigen verzweigten Moleküle (z.B. Isobutanol) nimmt zu.
Im nächsten Schritt erfolgt die Veresterung von vornehmlich Bernsteinsäure, aber auch Citronensäure mit den zuvor hergestellten Alkoholgemischen. Insbesondere wird dabei auch auf die Wiederverwendung der heterogenen Katalysatoren geachtet, da dies entscheidend für die Wirtschaftlichkeit des Verfahrens sein kann. Der Gesamtprozess wird aufgrund des Verzichts auf eine stoffspezifische Trennung (Aufreinigung) des Reaktionsprodukts stark vereinfacht, was die Herstellungskosten der Ester deutlich mindert. Die Umsetzung höherer Alkohole oder deren Gemische mit biobasierter Bernstein- oder Citronensäure läuft bevorzugt unter Verwendung saurer Katalysatoren ab. Die Reaktionen werden in einem Parallelreaktorsystem durchgeführt. Dieser Aufbau dient dazu, Reaktion und Stofftrennung voneinander zu separieren. Dadurch kann bei der Stofftrennung mit höheren Temperaturen gearbeitet werden.
Einsatzmöglichkeiten biobasierter Weichmacher
Die Ester werden in Mustermengen hergestellt, damit deren Anwendung als Weichmacher in unterschiedlichen Kunststoffen, biobasierten wie PLA, PHB oder Celluloseacetat und auch in fossil basierten wie PVC, intensiv getestet werden kann. Denn: Derartige biobasierte Weichmacher könnten künftig auf Basis fossiler Rohstoffe hergestellte Produkte mit hoher Marktrelevanz und dementsprechender Wertschöpfung ersetzen. Daher wird der Herstellung und späteren Applikation im Rahmen von Bioethanol 2.0 ein besonderer Stellenwert beigemessen.
Meistgelesene News
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für die chemische Industrie, Analytik, Labor und Prozess bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.