Weg von der Insel: Ungewöhnliches Desorptionsverhalten auf der Oberfläche von Katalysatoren
Prof. Dr. S. Günther / TUM
Die Reaktionen an der Oberfläche eines Abgaskatalysators im Auto lassen sich grob in drei Schritte einteilen: Zunächst lagern sich die Reaktionspartner an der Oberfläche des Katalysators an, dann folgt die eigentliche Reaktion und danach die Ablösung der gebildeten Produkte, die Desorption. Einer Gruppe von Wissenschaftlern um Professor Sebastian Günther von der TUM, Professor Joost Wintterlin von der LMU und Dr. Andrea Locatelli vom Syncrotron Elettra in Triest ist es nun erstmals gelungen, einen solchen Desorptionsvorgang mikroskopisch sichtbar zu machen und zu filmen.
Bisher galt die Ablösung des gebildeten Produkts am Ende der Reaktion, im Gegensatz zu den komplizierten anderen Oberflächenprozessen, als relativ einfach. Die Moleküle nehmen demnach thermische Energie vom Festkörper auf. Sobald diese Energie die Bindungsenergie an die Oberfläche übersteigt, desorbieren sie in einem rein statistischen Prozess, der nur von der Anzahl der Moleküle abhängt. „In einer Vielzahl von Fällen stimmen die nach diesem Modell berechneten Desorptionsraten aber nicht mit den gemessenen überein“, sagt Joost Wintterlin.
Darstellung im Nanometerbereich
Günther, Wintterlin und ihre Kollegen konnten mit ihren Untersuchungen nun zeigen, dass die räumliche Verteilung der Moleküle bei der Desorption wichtig ist. Für ihre Experimente nutzte das Forscherteam ein sogenanntes LEEM (LEEM steht für „low energy electron microscopy“), mit dem Oberflächen mit einer Auflösung im Nanometerbereich abgebildet werden können. Das LEEM funktioniert ähnlich wie ein normales Elektronenmikroskop, nur werden die energiereichen Elektronen, kurz bevor sie auf die Probenoberfläche treffen, auf niedrige Energien abgebremst. Mit dieser Mikroskopietechnik gelang es den Forschern, die Desorption von Sauerstoff von einer Silberoberfläche zu verfolgen.
„Es zeigte sich, dass die Sauerstoffschicht bei der Desorption in viele kleine Inseln zerfällt“, sagt Sebastian Günther. Die Atome desorbieren ausschließlich von den Rändern dieser Inseln, deren Größenverteilung von der Vorbehandlung des Silberkristalls abhängt. „Solche Effekte erklären die scheinbar unverständliche Desorptionsrate. Sie spielen vermutlich auch bei vielen anderen Desorptionsprozessen von Oberflächen eine Rolle und könnten unsere Vorstellungen von den Vorgängen auf Katalysatoroberflächen verändern“, sagt Günther.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für die chemische Industrie, Analytik, Labor und Prozess bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.