Ein Verstärker für die Kraft des leeren Raumes
Energie „ausborgen“ – aber nur kurz
Wenn man ein Auto parkt und später ist es weg, dann hat das höchstwahrscheinlich nichts mit Vakuumfluktuationen zu tun. Objekte können nicht verschwinden oder aus dem Nichts erscheinen – das würde den Energieerhaltungssatz verletzen. In der Quantenphysik ist die Angelegenheit allerdings komplizierter: „Aufgrund der Unschärferelation können virtuelle Teilchen für einen kurzen Zeitraum spontan entstehen“, sagt Igor Mazets von der TU Wien. „Je höher ihre Energie ist, umso schneller verschwinden sie auch wieder.“
Doch solche virtuellen Teilchen können messbare Auswirkungen haben. Auf sehr kurzen Distanzen können Vakuumfluktuationen zu einer Anziehung zwischen Atomen und Molekülen führen, den sogenannten Van-der-Waals-Kräften. Sogar die Fähigkeit eines Geckos an glatten Oberflächen nach oben zu klettern hat teilweise mit Vakuumfluktuationen und virtuellen Teilchen zu tun. Der berühmte Casimir-Effekt ist ein weiteres Beispiel für die Macht des Vakuums: Der Physiker Hendrik Casimir berechnete 1948, dass parallele Spiegel im leeren Raum einander anziehen, aufgrund der Art, wie sie das Vakuum um sie herum beeinflussen.
Atome und Photonen
Zwei Atome, die nahe beisammen liegen, verändern ebenfalls das Vakuum in ihrer Umgebung. Eines von ihnen kann ein virtuelles Photon emittiert, das praktisch instantan vom anderen Atom absorbiert wird – betrachtet auf einer Zeitskala, die größer ist als die kurze Lebensdauer des Photons hat sich eigentlich nichts geändert. Die Gesamtenergie ist gleich geblieben. Doch alleine schon die Tatsache, dass in diesem Fall virtuelle Teilchen ausgetauscht werden können, ändert die Eigenschaften des Vakuums um die Atome, und das führt zu einer Kraft.
„Normalerweise sind solche Kräfte sehr schwer zu messen“, sagt Igor Mazets. „Das liegt zum Teil daran, dass ein Photon in jede Richtung emittiert werden kann und dass die Chance für das Photon, vom zweiten Atom absorbiert zu werden, sehr gering ist.“
Aber was geschieht, wenn man dem virtuellen Teilchen hilft, den richtigen Weg zu finden? Ephraim Shahmoon, Gershon Kurizki (Weizmann Institute of Science) und Igor Mazets berechneten wie sich die Vakuumkräfte ändern, wenn die Atome unmittelbar bei einer gekühlten elektrischen Transmissionsleitung aufhalten, etwa bei einem Koaxialkabel oder einem koplanaren Wellenleiter (ein Element, das in der Resonator-Quantenelektrodynamik schon heute als offene Leitung verwendet wird). „In diesem Fall werden die Fluktuationen effektiv auf eine Dimension beschränkt“, sagt Igor Mazets. Die virtuellen Teilchen werden dazu gezwungen, sich in Richtung des anderen Atoms zu bewegen.
In diesem Fall wird die Kraft zwischen den Atomen, die durch die Fluktuationen entsteht, um Größenordnungen stärker als im leeren Raum. Normalerweise nimmt die Kraft mit zunehmendem Abstand zwischen den Atomen rasch ab. Durch die Transmissionsleitung fällt die Kraft nur noch mit der dritten Potenz statt wie gewöhnlich mit der siebten Potenz des Abstandes.
Das Forschungsteam glaubt dass ihr vorgeschlagenes Konzept für die Verstärkung der Kraft von Vakuum-Fluktuationen sehr wesentliche Auswirkungen auf unser Verständnis von Casimir- und Van-der-Waals-Kräften haben wird. Die Effekte könnten sogar für Anwendungen im der Quanteninformation und anderen aktuellen Quantentechnologien eingesetzt werden.
Meistgelesene News
Themen
Organisationen
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für die chemische Industrie, Analytik, Labor und Prozess bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.