Erstmals mit Details: Wie giftiges Kohlenmonoxid am Katalysator zu Kohlendioxid verbrennt

16.02.2015 - USA

Ein internationales Forschungsteam hat erstmals die flüchtigen Zwischenstufen beobachtet, die sich bilden, wenn Kohlenmonoxid auf einer heißen Ruthenium-Oberfläche, einem einfachen Katalysator, oxidiert. Sie nutzten dafür ultrakurze Röntgenblitze und Laserpulse am SLAC National Accelerator Laboratory, Menlo Park, Kalifornien. Dabei erhitzte ein Laserblitz zunächst die Ruthenium-Oberfläche und aktivierte so die absorbierten Kohlenmonoxid-Moleküle und Sauerstoff-Atome. Über Röntgenabsorptionsspektroskopie konnte das Team dann ermitteln, wie sich die elektronische Struktur der Sauerstoffatome veränderte, während sie mit Kohlenstoff-Atomen Bindungen anbahnten. Die beobachteten Übergangszustände stimmen mit quantenchemischen Berechnungen gut überein.

SLAC National Accelerator Laboratory

Die Abbildung illustriert eine Momentaufnahme während der Reaktion von CO zu CO2, wie sie nun erstmals am SLAC gelungen ist.

Überraschend war jedoch, wie viele Reaktionspartner in einen Übergangszustand aktiviert wurden – und ebenso überraschend war die Entdeckung, dass nur ein kleiner Bruchteil davon anschließend tatsächlich stabile CO2-Moleküle bildet. „Es ist so, als wenn man Murmeln einen Berg hochschießt und die meisten, die es bis oben geschafft haben,  rollen einfach wieder auf der gleichen Seite herunter“, sagt Anders Nilsson, Professor am SLAC/Stanford SUNCAT Center for Interface Science and Catalysis und an der Stockholm University, der das Forschungsprojekt geleitet hat. 

Ein Team vom Institut für Methoden und Instrumentierung für Forschung mit Synchrotronstrahlung am Helmholtz-Zentrum Berlin (HZB) hat zu diesem Forschungsprojekt am SLAC beigetragen. Die fruchtbare Zusammenarbeit wurde durch die Volkswagen-Stiftung sowie das Helmholtz Virtual Institute “Dynamic Pathways in Multidimensional Landscapes” ermöglicht. „Diese Ergebnisse helfen uns, eine entscheidende Reaktion an einem Katalysator zu verstehen, die auch für den Umweltschutz sehr wichtig ist“, erklärt HZB-Physiker Martin Beye.

Originalveröffentlichung

H. Öström et al., Science, 12 February 2015

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Alle FT-IR-Spektrometer Hersteller

Verwandte Inhalte finden Sie in den Themenwelten

Themenwelt Spektroskopie

Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!

50+ Produkte
30+ White Paper
40+ Broschüren
Themenwelt anzeigen
Themenwelt Spektroskopie

Themenwelt Spektroskopie

Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!

50+ Produkte
30+ White Paper
40+ Broschüren