Detektorsystem für Schnappschüsse biologischer und chemischer Prozesse

EU fördert SoNDe-Projekt zur Detektorentwicklung für Neutronenforschung mit rund 4 Millionen Euro

25.02.2015 - Deutschland

Das Forschungszentrum Jülich erhält gemeinsam mit Projektpartnern aus Wissenschaft und Industrie rund vier Millionen Euro aus dem Rahmenprogramm der Europäischen Union für Forschung und Innovation Horizont 2020 zur Entwicklung eines leistungsfähigeren Detektorsystems für die Forschung mit Neutronen. Ziel des SoNDe-Projektes ist ein Prototyp einer neuen Generation von Detektoren, die notwendig sind, um moderne Neutronenquellen wissenschaftlich optimal nutzen zu können. Der Detektor soll rund zwanzig Mal mehr Neutronen pro Sekunde bei gleichzeitig verbesserter Ortsauflösung nachweisen können und damit erstmals ermöglichen, Schnappschüsse biologischer und chemischer Prozesse aufzunehmen. Die Technologie bietet zudem eine Reihe weiterer Vorteile und ist auch für Verwendungen außerhalb der Neutronenforschung geeignet.

Forschungszentrum Jülich

Dieser etwa ein Quadratmeder große herkömmliche Szintillationsdetektor im Inneren eines Neutronenstreuinstruments besitzt acht Reihen mit jeweils acht Photomultipliern.

Neutronen sind elektrisch neutrale Bausteine der Atomkerne. Sie werden in spezialisierten Großforschungsanlagen erzeugt und mit Hilfe so genannter Streuinstrumente auf die zu untersuchenden Proben gelenkt. An den Atomkernen der Proben "prallen" die Neutronen ab; dabei können sie ihre Richtung und Geschwindigkeit ändern. Die Art dieser "Streuung" gibt Auskünfte über die Anordnung und Bewegung der Atome in der Probe, die komplementären Methoden wie Röntgen oder Elektronenmikroskopie verborgen bleiben. Detektoren wandeln die gestreuten Neutronen in einem mehrstufigen Prozess in elektronische Signale um. Der hohe Aufwand ist nötig, weil die Kernbausteine für das Auge unsichtbar sind und keine elektrische Ladung tragen.

Die so genannte Zählrate der Detektoren – die Zahl der nachweisbaren Neutronen pro Sekunde – ist derzeit auf den unteren einstelligen Megahertz-Bereich begrenzt. Das limitiert auch die Leistungsfähigkeit der Experimente an modernen und noch mehr an zukünftigen Neutronenquellen mit hohem Neutronenfluss. Denn wenn zu viele Neutronen zu rasch nacheinander auf zu schwache Detektoren treffen, ist keine Messung möglich. Eine neue Detektortechnologie mit etwa zwanzigfach verbesserter Zählrate und weiteren Vorteilen wollen Forscher und Ingenieure des Forschungszentrums Jülich deshalb in den kommenden vier Jahren gemeinsam mit Partnern an den Neutronenforschungszentren Laboratoire Léon-Brillouin in Frankreich und European Spallation Source (ESS) in Schweden, der schwedischen Universität Lund sowie dem norwegischen Unternehmen Integrated Detector Electronics AS entwickeln. Ende Januar hat die Europäische Kommission zugestimmt, dieses Projekt, das durch das Forschungszentrum Jülich koordiniert wird, mit rund vier Millionen Euro zu fördern.

Die Detektoren enthalten, wie bisher auch, so genanntes Szintillationsmaterial, das einen schwachen Lichtblitz aussendet, wenn ein Neutron darauf trifft. Hierher rührt auch das Projektakronym Solid-state Neutron Detector (Festkörperneutronendetektor). Herz der neuen Technologie sind Multianoden-Photomultiplier, die die bisher genutzten Photomultiplier ersetzen sollen. Photomultiplier verstärken die Lichtsignale und wandeln sie in elektrische um. Herkömmliche Photomultiplier haben einen Durchmesser von etwa zehn Zentimetern, die zukünftigen nur etwa fünf Millimeter. Dadurch lassen sich etwa hundertmal mehr Sensoren pro Fläche unterbringen, wodurch sich Zählrate und Auflösung der Detektoren verbessern.

"Projektziel ist ein Prototyp, der an der im Bau befindlichen European Spallation Source seine Überlegenheit unter Beweis stellen soll", erläutert Dr. Sebastian Jaksch, Projektkoordinator am Jülich Centre for Neutron Science (JCNS). Die ESS soll ab 2019 etwa 30 Mal mehr Neutronen produzieren als heutige Anlagen. Dadurch reichen schon ganz kurze Neutronenblitze, um Daten zu gewinnen. So lassen sich kleinere Probenmengen und schnellere Prozesse untersuchen. Ähnlich wie mit einem Stroboskoplicht lassen sich Schnappschüsse winziger Bewegungen aufnehmen und zu einem Film zusammensetzen, zum Beispiel die Aggregation von organischen Molekülen oder chemische Reaktionen.

Der Detektor wird in modularer Bauweise entwickelt, was zwei große Vorteile hat: Erstens lässt sich die Technologie leicht für verschiedene Experimente anpassen, bei denen je nach Zielsetzung Detektorflächen von wenigen Quadratzentimetern bis zu mehreren Quadratmetern benötigt werden. Außerdem können defekte Flächen innerhalb weniger Tage ausgetauscht werden, wohingegen Reparaturen heutiger Detektoren bis zu mehrere Monate dauern können. Ein weiterer Vorteil der Technologie ist, dass sie ohne den Einsatz von teurem Helium-3 auskommt. Dieses auf der Erde seltene Gas ist nur aufwändig zu gewinnen und wird in steigendem Maße für andere Zwecke benötigt. Da sich Szintillationsdetektoren grundsätzlich für eine weite Bandbreite von Anwendungen eignen, etwa für bildgebende Verfahren in Medizin und Technik, untersucht das Projekt auch solche Einsatzmöglichkeiten.

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

miniDAWN

miniDAWN von Wyatt Technology

Die perfekte Wahl für die Charakterisierung von Proteinen und Polymeren: das neue miniDAWN

miniDAWN – Statische Lichtstreuung (SLS) für die Bestimmung absoluter Molmassen

Brechungsindexdetektoren
DAWN®

DAWN® von Wyatt Technology

Das Instrument für Mehrwinkel-Lichtstreuung (MALS): Das DAWN von Wyatt Technology

Weltweit führende Lichtstreu-Instrumente für die absolute Charakterisierung von Makromolekülen

MALS-Detektoren
AZURA Analytical HPLC

AZURA Analytical HPLC von KNAUER

Maximieren Sie Ihre Analyseeffizienz mit maßgeschneiderten HPLC-Systemlösungen

Lassen Sie Ihre Anwendung Ihre analytische Systemlösung definieren

UHPLC-Systeme
Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

Alle FT-IR-Spektrometer Hersteller