Masse eines seltsamen Atomkerns mit großer Genauigkeit neu bestimmt

Messung am Mainzer Teilchenbeschleuniger MAMI soll die „starke Kraft“ verstehen helfen

15.06.2015 - Deutschland

Einer internationalen Gruppe Physikern ist es am Mainzer Institut für Kernphysik gelungen, die Masse eines „seltsamen“ Atomkerns mit einer neuartigen Messmethode zu bestimmen, die eine wesentlich größere Genauigkeit als bisherige Methoden aufweist. Am Teilchenbeschleuniger MAMI ließ sich der radioaktive Zerfall von künstlich erzeugten, überschweren Wasserstoff-Atomkernen weltweit zum ersten Mal mit einer Kombination mehrerer magnetischer Spektrometer beobachten. Über das genaue Vermessen der Zerfallsprodukte konnte die Masse präzise ermittelt werden.

Institut für Kernphysik, JGU

Ansicht der Experimentierhalle am Teilchenbeschleuniger MAMI. Durch die Verwendung der im Bild zu sehenden magnetischen Spektrometer konnte die Masse eines seltsamen Atomkerns neu vermessen werden.

Solche Messungen sind besonders hilfreich für das Verständnis der „starken Kraft“, welche die Atomkerne zusammenhält und so verantwortlich ist für die Beständigkeit der Materie. Auch nach Jahrzehnten der Forschung sind viele grundsätzliche Details dieser Kraft noch nicht verstanden. Atomkerne der uns alltäglich umgebenden Materie bestehen aus zwei Bausteinen, den positiv geladenen Protonen und den elektrisch neutralen Neutronen. Diese wirken auf vielfältige Weise miteinander und untereinander. Hauptsächlich herrscht zwischen ihnen eine ungeheure Anziehungskraft, die für die Bindung der Bausteine zu Atomkernen verantwortlich ist. Die Masse des Atomkerns ist dabei geringer als die Summe der Masse seiner Bestandteile. Die „fehlende Masse“ steckt nach Einsteins berühmter Formel E = mc2 in der Energie der Bindungen im Atomkern. Wird die Masse präzise vermessen, lässt sich also die Bindungsenergie bestimmen, und es lassen sich Rückschlüsse auf die Natur der starken Kraft ziehen.

Neben den Protonen und Neutronen können prinzipiell auch andere verwandte Teilchen in einem Atomkern gebunden sein, etwa ein sogenanntes Hyperon, das auch als „seltsames“ Neutron bekannt ist. Einen solchen Atomkern nennt man dann einen seltsamen Atomkern oder auch Hyperkern. An Teilchenbeschleunigern wie MAMI ist es möglich, diese künstlich zu erzeugen. Seltsame Teilchen können auf der Erde nur für einen Bruchteil einer Sekunde existieren, aber möglicherweise gibt es große Vorkommen tief im Innern von Neutronensternen, die ebenso von der starken Kraft zusammen gehalten werden. Viele offene Fragen zu diesen spektakulären Sternenleichen aus den Tiefen des Alls sind bislang unbeantwortet: Wie groß sind Neutronensterne? Was befindet sich in ihren nicht beobachtbaren Zentren? Wie heiß und dicht ist es dort? Über das Studium der Hyperkerne lassen sich sonst unzugängliche Details der starken Kräfte bestimmen, welche nicht nur in seltsamen Atomkernen, sondern auch in Neutronensternen wirken. Somit werden die Fragen angegangen, wie man den Aufbau von winzigen Atomkernen und von gigantischen Neutronensternen verstehen kann und wie beides zusammenhängt.

Am Mainzer Mikrotron haben die Wissenschaftler um Univ.-Prof. Dr. Josef Pochodzalla und PD Dr. Patrick Achenbach eine sehr schwere Form des gewöhnlichen Elements Wasserstoff erzeugt, dessen Kern aus einem Proton, zwei Neutronen und einem Hyperon besteht. Dieser künstlich geschaffene seltsame Atomkern hat eine etwa doppelt so große Masse wie die schwerste stabil in der Natur vorkommende Form des Wasserstoffs, das Deuterium. Um die Masse des seltsamen Wasserstoff-Atomkerns möglichst exakt bestimmen zu können, beobachteten die Kernphysiker den radioaktiven Zerfall des Atomkerns erstmals mit mehreren magnetischen Spektrometern zugleich. Diese Geräte funktionieren hier ähnlich wie Elektronenmikroskope, allerdings in einem viel größeren Maßstab: Sie lenken die Teilchen durch ein starkes Magnetfeld ab und bündeln sie an einer Stelle, an der Teilchendetektoren sie vermessen. Für eine möglichst große Genauigkeit sind die Spektrometer nahezu 15 Meter hoch und wiegen über 200 Tonnen. Weitere Voraussetzung für eine äußerst präzise Messung ist die große Energie, Schärfe und Stabilität des beschleunigten Teilchenstrahls, wie sie an MAMI erreicht wird.

Als Ergebnis der Mainzer Messung konnte die Bindungsenergie des Hyperons im sehr schweren Wasserstoff-Atomkern bestimmt werden. Sie ist etwa gleich groß wie die gesamte Bindungsenergie des Deuterium-Atomkerns. Für die Wissenschaftler ganz besonders spannend ist die noch unbeantwortete Frage, ob diese Bindungsenergie sich verändert, wenn das Hyperon statt in einen Wasserstoff-Atomkern in einen gleich schweren Helium-Atomkern eingebettet wird. Das würde dann bedeuten, dass die Anziehungskraft der Protonen und Neutronen auf das Hyperon im Atomkern unterschiedlich – und die Symmetrie zwischen den Kernbausteinen gebrochen wäre

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

ERASPEC

ERASPEC von eralytics

Einfachste Kraftstoffanalyse in Sekunden mit ERASPEC

Bestimmung von bis zu 40 Kraftstoffparametern auf Knopfdruck

S4 T-STAR

S4 T-STAR von Bruker

TXRF-Spektrometer: Sub-ppb Nachweisgrenzen & 24/7 Analytik

Minimale Betriebskosten, weil Gase, Medien oder Laborausrüstung entfallen

Totalreflexions-Röntgenfluoreszenzspektrometer
PlasmaQuant 9100

PlasmaQuant 9100 von Analytik Jena

Neues ICP-OES PlasmaQuant 9100 für komplexe Probenmatrices

Mehr sehen. Mehr wissen. ICP-OES vereinfacht Analyse matrixlastiger Proben

ICP-OES-Spektrometer
ALPHA II

ALPHA II von Bruker

Chemische Analyse leicht gemacht: Kompaktes FT-IR-System

Steigern Sie die Effizienz Ihrer Routineanalysen mit benutzerfreundlicher Technologie

FT-IR-Spektrometer
NANOPHOX CS

NANOPHOX CS von Sympatec

Partikelgrößenanalyse im Nanobereich: Hohe Konzentrationen problemlos analysieren

Zuverlässige Ergebnisse ohne aufwändige Probenvorbereitung

Partikelanalysatoren
ZEEnit

ZEEnit von Analytik Jena

Zeeman-Technik mit maximaler Empfindlichkeit und Applikationsvielfalt

Quergeheizte Graphitrohrofen für optimale Atomisierungsbedingungen und hohen Probendurchsatz

AAS-Spektrometer
PlasmaQuant MS Elite

PlasmaQuant MS Elite von Analytik Jena

Massenspektrometer für hochempfindliche Forschungsanwendungen und niedrigste Nachweisgrenzen

Die Erfolgsformel in der LC-ICP-MS – PlasmaQuant MS-Serie und PQ LC

Agera

Agera von HunterLab Europe

Farbe und Glanzgrad gleichzeitig messen - und das sekundenschnell

Einfach zu bedienendes Farbmessgerät: normkonform, robust und präzise

Kolorimeter
Mikrospektrometer

Mikrospektrometer von Hamamatsu Photonics

Ultrakompaktes Mikrospektrometer für vielseitige Anwendungen

Präzise Raman-, UV/VIS- und NIR-Messungen in tragbaren Geräten

Mikrospektrometer
S2 PICOFOX

S2 PICOFOX von Bruker

Schnelle und präzise Spurenelementanalyse unterwegs

TXRF-Technologie für minimale Proben und maximale Effizienz

Totalreflexions-Röntgenfluoreszenzspektrometer
2060 Raman Analyzer

2060 Raman Analyzer von Metrohm

Selbstkalibrierendes Inline-Raman Spektrometer

Feststoffe, Flüssigkeiten und Gase analysieren - für reproduzierbare, genaue Ergebnisse im Prozess

contrAA 800

contrAA 800 von Analytik Jena

contrAA 800 Serie – Atomic Absorption. Redefined

Kombiniert das Beste der klassischen Atomabsorption mit den Vorteilen von ICP-OES-Spektrometern

ICP-OES-Spektrometer
novAA®  800

novAA® 800 von Analytik Jena

Der Analysator für Sie - novAA 800-Serie

Das zuverlässige Multitalent für die effiziente und kostengünstige Routineanalyse

SPECORD PLUS

SPECORD PLUS von Analytik Jena

Die neue Generation der Zweistrahlphotometer von Analytik Jena

Der moderne Klassiker garantiert höchste Qualität

INVENIO

INVENIO von Bruker

FT-IR Spektrometer der Zukunft: INVENIO

Völlig frei aufrüstbares und konfigurierbares FT-IR Spektrometer

FT-IR-Spektrometer
ZSX Primus IV/IVi

ZSX Primus IV/IVi von Rigaku

Hochpräzise WDXRF-Analyse für industrielle Anwendungen

Maximale Empfindlichkeit und Durchsatz für leichte Elemente und komplexe Proben

Micro-Z ULS

Micro-Z ULS von Rigaku

Schwefelgehalt in Kraftstoffen genau messen: WDXRF-Analysator

Zuverlässige Routineuntersuchungen mit 0,3 ppm Nachweisgrenze und kompaktem Design

WDXRF-Spektrometer
BIOS ANALYTIQUE - Soluciones de Renting y Leasing para laboratorios

BIOS ANALYTIQUE - Soluciones de Renting y Leasing para laboratorios von Bios Analytique

Ihr Spezialist für Vermietung und Leasing von Laborinstrumenten in Europa

Beim Finanzieren geht es nicht nur ums Geld verleihen - Es geht um Lösungen, die Wert schaffen

Laborgeräte
SPECTRO ARCOS

SPECTRO ARCOS von SPECTRO Analytical Instruments

Optisches Emissions-Spektrometer mit induktiv gekoppeltem Plasma (ICP-OES) für höchste Ansprüche

Das SPECTRO ARCOS ICP-OES bietet Elementanalytik auf einem neuen Niveau

ICP-OES-Spektrometer
SR Series Spectrometer

SR Series Spectrometer von Ocean Insight

Der neue Ocean SR2 liefert das beste SNR seiner Klasse für konfigurierbare Spektrometer

Hochgeschwindigkeits-Spektrenerfassung mit fortschrittlicher Signal-Rausch-Leistung

Spektrometer
Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

Alle FT-IR-Spektrometer Hersteller