Masse eines seltsamen Atomkerns mit großer Genauigkeit neu bestimmt
Messung am Mainzer Teilchenbeschleuniger MAMI soll die „starke Kraft“ verstehen helfen
Institut für Kernphysik, JGU
Solche Messungen sind besonders hilfreich für das Verständnis der „starken Kraft“, welche die Atomkerne zusammenhält und so verantwortlich ist für die Beständigkeit der Materie. Auch nach Jahrzehnten der Forschung sind viele grundsätzliche Details dieser Kraft noch nicht verstanden. Atomkerne der uns alltäglich umgebenden Materie bestehen aus zwei Bausteinen, den positiv geladenen Protonen und den elektrisch neutralen Neutronen. Diese wirken auf vielfältige Weise miteinander und untereinander. Hauptsächlich herrscht zwischen ihnen eine ungeheure Anziehungskraft, die für die Bindung der Bausteine zu Atomkernen verantwortlich ist. Die Masse des Atomkerns ist dabei geringer als die Summe der Masse seiner Bestandteile. Die „fehlende Masse“ steckt nach Einsteins berühmter Formel E = mc2 in der Energie der Bindungen im Atomkern. Wird die Masse präzise vermessen, lässt sich also die Bindungsenergie bestimmen, und es lassen sich Rückschlüsse auf die Natur der starken Kraft ziehen.
Neben den Protonen und Neutronen können prinzipiell auch andere verwandte Teilchen in einem Atomkern gebunden sein, etwa ein sogenanntes Hyperon, das auch als „seltsames“ Neutron bekannt ist. Einen solchen Atomkern nennt man dann einen seltsamen Atomkern oder auch Hyperkern. An Teilchenbeschleunigern wie MAMI ist es möglich, diese künstlich zu erzeugen. Seltsame Teilchen können auf der Erde nur für einen Bruchteil einer Sekunde existieren, aber möglicherweise gibt es große Vorkommen tief im Innern von Neutronensternen, die ebenso von der starken Kraft zusammen gehalten werden. Viele offene Fragen zu diesen spektakulären Sternenleichen aus den Tiefen des Alls sind bislang unbeantwortet: Wie groß sind Neutronensterne? Was befindet sich in ihren nicht beobachtbaren Zentren? Wie heiß und dicht ist es dort? Über das Studium der Hyperkerne lassen sich sonst unzugängliche Details der starken Kräfte bestimmen, welche nicht nur in seltsamen Atomkernen, sondern auch in Neutronensternen wirken. Somit werden die Fragen angegangen, wie man den Aufbau von winzigen Atomkernen und von gigantischen Neutronensternen verstehen kann und wie beides zusammenhängt.
Am Mainzer Mikrotron haben die Wissenschaftler um Univ.-Prof. Dr. Josef Pochodzalla und PD Dr. Patrick Achenbach eine sehr schwere Form des gewöhnlichen Elements Wasserstoff erzeugt, dessen Kern aus einem Proton, zwei Neutronen und einem Hyperon besteht. Dieser künstlich geschaffene seltsame Atomkern hat eine etwa doppelt so große Masse wie die schwerste stabil in der Natur vorkommende Form des Wasserstoffs, das Deuterium. Um die Masse des seltsamen Wasserstoff-Atomkerns möglichst exakt bestimmen zu können, beobachteten die Kernphysiker den radioaktiven Zerfall des Atomkerns erstmals mit mehreren magnetischen Spektrometern zugleich. Diese Geräte funktionieren hier ähnlich wie Elektronenmikroskope, allerdings in einem viel größeren Maßstab: Sie lenken die Teilchen durch ein starkes Magnetfeld ab und bündeln sie an einer Stelle, an der Teilchendetektoren sie vermessen. Für eine möglichst große Genauigkeit sind die Spektrometer nahezu 15 Meter hoch und wiegen über 200 Tonnen. Weitere Voraussetzung für eine äußerst präzise Messung ist die große Energie, Schärfe und Stabilität des beschleunigten Teilchenstrahls, wie sie an MAMI erreicht wird.
Als Ergebnis der Mainzer Messung konnte die Bindungsenergie des Hyperons im sehr schweren Wasserstoff-Atomkern bestimmt werden. Sie ist etwa gleich groß wie die gesamte Bindungsenergie des Deuterium-Atomkerns. Für die Wissenschaftler ganz besonders spannend ist die noch unbeantwortete Frage, ob diese Bindungsenergie sich verändert, wenn das Hyperon statt in einen Wasserstoff-Atomkern in einen gleich schweren Helium-Atomkern eingebettet wird. Das würde dann bedeuten, dass die Anziehungskraft der Protonen und Neutronen auf das Hyperon im Atomkern unterschiedlich – und die Symmetrie zwischen den Kernbausteinen gebrochen wäre
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Diese Produkte könnten Sie interessieren
ERASPEC von eralytics
Einfachste Kraftstoffanalyse in Sekunden mit ERASPEC
Bestimmung von bis zu 40 Kraftstoffparametern auf Knopfdruck
S4 T-STAR von Bruker
TXRF-Spektrometer: Sub-ppb Nachweisgrenzen & 24/7 Analytik
Minimale Betriebskosten, weil Gase, Medien oder Laborausrüstung entfallen
PlasmaQuant 9100 von Analytik Jena
Neues ICP-OES PlasmaQuant 9100 für komplexe Probenmatrices
Mehr sehen. Mehr wissen. ICP-OES vereinfacht Analyse matrixlastiger Proben
ALPHA II von Bruker
Chemische Analyse leicht gemacht: Kompaktes FT-IR-System
Steigern Sie die Effizienz Ihrer Routineanalysen mit benutzerfreundlicher Technologie
NANOPHOX CS von Sympatec
Partikelgrößenanalyse im Nanobereich: Hohe Konzentrationen problemlos analysieren
Zuverlässige Ergebnisse ohne aufwändige Probenvorbereitung
ZEEnit von Analytik Jena
Zeeman-Technik mit maximaler Empfindlichkeit und Applikationsvielfalt
Quergeheizte Graphitrohrofen für optimale Atomisierungsbedingungen und hohen Probendurchsatz
PlasmaQuant MS Elite von Analytik Jena
Massenspektrometer für hochempfindliche Forschungsanwendungen und niedrigste Nachweisgrenzen
Die Erfolgsformel in der LC-ICP-MS – PlasmaQuant MS-Serie und PQ LC
Agera von HunterLab Europe
Farbe und Glanzgrad gleichzeitig messen - und das sekundenschnell
Einfach zu bedienendes Farbmessgerät: normkonform, robust und präzise
Mikrospektrometer von Hamamatsu Photonics
Ultrakompaktes Mikrospektrometer für vielseitige Anwendungen
Präzise Raman-, UV/VIS- und NIR-Messungen in tragbaren Geräten
S2 PICOFOX von Bruker
Schnelle und präzise Spurenelementanalyse unterwegs
TXRF-Technologie für minimale Proben und maximale Effizienz
2060 Raman Analyzer von Metrohm
Selbstkalibrierendes Inline-Raman Spektrometer
Feststoffe, Flüssigkeiten und Gase analysieren - für reproduzierbare, genaue Ergebnisse im Prozess
contrAA 800 von Analytik Jena
contrAA 800 Serie – Atomic Absorption. Redefined
Kombiniert das Beste der klassischen Atomabsorption mit den Vorteilen von ICP-OES-Spektrometern
novAA® 800 von Analytik Jena
Der Analysator für Sie - novAA 800-Serie
Das zuverlässige Multitalent für die effiziente und kostengünstige Routineanalyse
SPECORD PLUS von Analytik Jena
Die neue Generation der Zweistrahlphotometer von Analytik Jena
Der moderne Klassiker garantiert höchste Qualität
INVENIO von Bruker
FT-IR Spektrometer der Zukunft: INVENIO
Völlig frei aufrüstbares und konfigurierbares FT-IR Spektrometer
ZSX Primus IV/IVi von Rigaku
Hochpräzise WDXRF-Analyse für industrielle Anwendungen
Maximale Empfindlichkeit und Durchsatz für leichte Elemente und komplexe Proben
Micro-Z ULS von Rigaku
Schwefelgehalt in Kraftstoffen genau messen: WDXRF-Analysator
Zuverlässige Routineuntersuchungen mit 0,3 ppm Nachweisgrenze und kompaktem Design
BIOS ANALYTIQUE - Soluciones de Renting y Leasing para laboratorios von Bios Analytique
Ihr Spezialist für Vermietung und Leasing von Laborinstrumenten in Europa
Beim Finanzieren geht es nicht nur ums Geld verleihen - Es geht um Lösungen, die Wert schaffen
SPECTRO ARCOS von SPECTRO Analytical Instruments
Optisches Emissions-Spektrometer mit induktiv gekoppeltem Plasma (ICP-OES) für höchste Ansprüche
Das SPECTRO ARCOS ICP-OES bietet Elementanalytik auf einem neuen Niveau
SR Series Spectrometer von Ocean Insight
Der neue Ocean SR2 liefert das beste SNR seiner Klasse für konfigurierbare Spektrometer
Hochgeschwindigkeits-Spektrenerfassung mit fortschrittlicher Signal-Rausch-Leistung
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für die chemische Industrie, Analytik, Labor und Prozess bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.