Erste Solarzelle aus hochgeordneten Molekülgerüsten
Neuartiges Material auf Basis von metall-organischen Gerüstverbindungen (MOF) eignet sich für Photovoltaik
Wöll/KIT
„Wir haben die Tür zu einem neuen Raum geöffnet“, sagt Professor Christof Wöll, Direktor des Instituts für Funktionelle Grenzflächen (IFG) am KIT. „Diese neu erschlossene Anwendung von metall-organischen Gerüstverbindungen ist erst der Anfang, das Ende dieser Entwicklung wird noch lange nicht erreicht sein“, betont der Physiker.
Metallorganische Verbindungen – Metal-Organic Frameworks, kurz MOFs - bestehen aus zwei Grundelementen, metallischen Knotenpunkten und organischen Molekülen, die wie Bausteine zu mikroporösen, kristallinen Materialien zusammengesetzt werden. Die MOFs genießen seit gut einem Jahrzehnt besonderes Forschungsinteresse, weil sich ihre Funktionalität durch Variation der Bausteine anpassen lässt. „So ist es möglich eine Vielzahl von Eigenschaften des Materials zu ändern“, erläutert Wöll. Es wurden bereits mehr als 20.000 verschiedene MOF-Typen entwickelt, meist eingesetzt für die Speicherung oder Trennung von Gasen.
Die Wissenschaftlergruppe unter Federführung des KIT hat jetzt MOFs hergestellt, bei denen Porphyrine als Baustein eingesetzt werden. Diese porphyrin-basierten MOFs haben hochinteressante photophysikalische Eigenschaften: Neben einer hohen Effizienz in der Erzeugung von Ladungsträgern wird eine hohe Ladungsträger-Beweglichkeit beobachtet. Rechnungen, die von der am Projekt beteiligten Gruppe um Professor Thomas Heine von der Jacobs University Bremen durchgeführt wurden, legen es nahe, dass die sehr guten Eigenschaften der Solarzelle auf einem zusätzlichen Mechanismus – der Ausbildung indirekter Bandlücken – basieren, der für die Photovoltaik eine wichtige Rolle spielt. Die Natur setzt Porphyrine als Universal-Moleküle ein, unter anderem im Blutfarbstoff sowie im Chlorophyll, wo diese organischen Farbstoffe Licht in chemische Energie umwandeln. Eine mit dem neuartigen Porphyrin-MOF hergestellte, metall-organische Solarzelle stellen Forscher nun in der Fachzeitschrift Angewandte Chemie vor. Der Beitrag trägt den Titel `Photoinduzierte Erzeugung von Ladungsträgern in epitaktischen MOF-Dünnschichten: hohe Leistung aufgrund einer indirekten elektronischen Bandlücke?´
„Wir kommen in der Solarzelle mit nur einem einzigen organischen Molekül aus, das ist der Clou“, betont Wöll. Die Forscher erwarten, die photovoltaische Leistung des Materials künftig erheblich steigern zu können, indem sie die Poren innerhalb der kristallinen Gitterstruktur mit Molekülen füllen, die elektrische Ladungen abgeben und aufnehmen können.
Durch ein am KIT entwickeltes Verfahren wachsen die kristallinen Gerüste lagenweise auf einer transparenten, leitfähigen Trägeroberfläche auf und bilden eine homogene Dünnschicht, sogenannte SURMOFs. „Das SURMOF-Verfahren eignet sich prinzipiell für einen kontinuierlichen Herstellungsprozess und erlaubt prinzipiell auch die Beschichtung größerer Kunststoff-Trägerflächen“, so Wöll. Durch ihre mechanischen Eigenschaften ließen sich die nur wenige 100 Nanometer dicken MOF-Dünnschichten für flexible Solarzellen nutzen, etwa zum Beschichten von Kleiderstoffen oder sich verformenden Bauteilen.
Angesichts der steigenden Nachfrage nach technischen Systemen, die Sonnenlicht in elektrische Energie umwandeln, bieten organische Materialien eine hochinteressante Alternative zu Silizium, das kostenintensiv aufbereitet werden muss, um für die photoaktive Schicht einer Solarzelle verwendet zu werden.