Neues Hochleistungselektrodenmaterial für Natriumbatterien

Natriumionenakkumulatoren für intelligente Netze?

31.08.2015 - Japan

Die Anforderungen an moderne Akkumulatoren für stationäre Energiespeichersysteme sind nichts weniger als lange Lebensdauer, geringe Kosten, hohe Sicherheit, hoher Wirkungsgrad und eine hohe Betriebspannung. Preiswertes Natrium als Ersatz für das teure Lithium in den Batterien würden die Kosten bereits massiv senken, und in der Zeitschrift Angewandte Chemie berichten chinesische und japanische Wissenschaftler über ihre Entwicklung einer Hochleistungs-Batteriezelle mit einer bipolaren Elektrode, die aus einem gemischten Natrium-Übergangsmetalloxid besteht und für die industrielle Anwendung außerordentlich geeignet scheint.

Die erneuerbaren Energien haben den Nachteil, dass sie nicht vorhersagbar verfügbar sind und außerdem nicht an jedem möglichen Standort eingesetzt werden können. Eine Lösung wären intelligente Netze und Hochleistungsbatterien, die aber noch lange nicht ausgereift sind. Als billigere Alternative für Lithiumionen gilt Natrium, aber auch hier muss noch eine Reihe von Problemen überwunden werden. Das größere Natriumion destabilisiert die Elektrode durch die Volumenänderung bei den Lade-Entladevorgängen und hat außerdem ein mit dem Elektrodenmaterial schwerer verträgliches Oxidationspotential. Die verblüffende Lösung, die Haoshen Zhou und seine Kollegen am National Institute of Advanced Industrial Science and Technology (AIST) und der Tohoku-Universität in Japan sowie der Nanjing-Universität in China präsentieren, ist ein bipolares Material, das gleichzeitig als Anode und Kathode in einer vollständig symmetrischen Natriumzelle dient.

Dieses bipolare Elektrodenmaterial ist ein gemischtes Titanoxid mit dem Namen P2-NNCT für "P2-Phase von Na0.66Ni0.17Co0.17Ti0.66O2". Die Ziffern geben die unterschiedlichen Anteile der Elemente Natrium, Nickel, Cobalt und Titan an. Während das Natriumion in der Struktur die bewegliche Ladung repräsentiert, dienen die Zentren Nickel und Cobalt als negative Elektrode, und das Titanoxid ist die positive Elektrode. Am wichtigsten für die genannten Sicherheits- und Leistungsaspekte ist jedoch die starre Schichtstruktur des Materials. Wie eingeklammert befinden sich die Natriumionen zwischen den Übergangsmetalloxidschichten, aber beim Lade- und Entladevorgang können sie ohne Volumenänderung entlang der Schichten frei wandern.

Zhou bestätigt: "Als Batteriezelle angeordnet, besitzt das neue Material die bislang am höchsten gemessene durchschnittliche Betriebsspannung von 3.1 V in symmetrischen Natriumzellen und die längste Lebensdauer mit 1000 Zyklen von sämtlichen Natriumzellen". Mit einem Coulomb-Wirkungsgrad von nahe 99.9% außer in den Startzyklen wäre eine solche Batterie als Energiespeicher in praktischen großtechnischen Anwendungen denkbar. Dies machen die Autoren deutlich: "Unsere optimierten symmetrischen P2-NNCT-Natriumzellen sind besser als alle anderen Natrium-Vollzellen". Dies alles spricht in der Tat für eine bedeutende Weiterentwicklung der Batterietechnik für die neuen Energien.

Originalveröffentlichung

Shaohua Guo et al.; A High-Voltage and Ultralong-Life Sodium Full Cell for Stationary Energy Storage; Angewandte Chemie;Article first published online: 18 AUG 2015

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Alle FT-IR-Spektrometer Hersteller

Verwandte Inhalte finden Sie in den Themenwelten

Themenwelt Batterietechnik

Die Themenwelt Batterietechnik bündelt relevantes Wissen in einzigartiger Weise. Hier finden Sie alles über Anbieter und deren Produkte, Webinare, Whitepaper, Kataloge und Broschüren.

30+ Produkte
150+ Unternehmen
35+ White Paper
20+ Broschüren
Themenwelt anzeigen
Themenwelt Batterietechnik

Themenwelt Batterietechnik

Die Themenwelt Batterietechnik bündelt relevantes Wissen in einzigartiger Weise. Hier finden Sie alles über Anbieter und deren Produkte, Webinare, Whitepaper, Kataloge und Broschüren.

30+ Produkte
150+ Unternehmen
35+ White Paper
20+ Broschüren