Wie Atome in Nanomaterialien vibrieren
Deniz Bozyigit / ETH Zurich
Gitter schwingt stark an weichen Oberflächen
ETH-Professorin Vanessa Wood und ihr Team zeigen, wie sich Gitterschwingungen in Nanopartikeln verhalten und wie dieses Wissen systematisch für die gezielte Entwicklung von nanostrukturierten Materialien verwendet werden kann.
Bei Materialien mit einer Grösse von weniger als 10 bis 20 Nanometern sind Schwingungen von Oberflächenatomen besonders ausgeprägt und haben einen wichtigen Einfluss auf die Materialeigenschaften.
«Während in Bereichen wie der Katalyse, der Thermoelektrik oder der Supraleitung solch starke Schwingungen hilfreich sein können, ist der beobachtete Effekt für andere Anwendungen wie LEDs und Solarzellen unerwünscht», erklärt Wood.
Tatsächlich erklärt die Publikation, weshalb Solarzellen aus Nanopartikeln ihr Potential bislang noch nicht vollständig ausschöpfen konnten. Durch den Vergleich von Experiment und Simulation zeigt die Forschungsgruppe, wie die Interaktion von Gitterschwingungen an der Oberfläche mit Elektronen den Fotostrom in den Solarzellen verringert.
«Da wir nun zeigen konnten, dass Gitterschwingungen an der Oberfläche ausserordentlich wichtig sind, können wir systematisch Materialien entwickeln, die diese unterdrücken oder verstärken», so Wood.
Bessere Solarzellen
Woods Forschungsgruppe arbeitet schon seit längerem mit besonderen Nanomaterialien, den kolloidalen Nanokristallen. Diese Kristalle, die auch als Quantenpunkte bekannt sind, besitzen Halbleitereigenschaften und können kontrolliert mit einem Durchmesser von zwei bis zehn Nanometern synthetisiert werden.
Diese Materialien sind aufgrund ihrer optischen und elektrischen Eigenschaften interessant, die beide stark von der Partikelgrösse abhängen. Sie werden bereits heute kommerziell als rote und grüne Leuchtmittel in LED-Fernsehern genutzt und als kostengünstige Alternative für aus Lösungsmitteln abgeschiedene Solarzellen gehandelt. Forscher haben herausgefunden, dass wenn man eine Schale aus bestimmten Atomen um die Oberfläche der Nanokristalle legt, dann kann man die Leistung der Solarzelle verbessern.
Bisher war unklar, wieso dies funktioniert. Der Fachartikel erklärt nun, wie dies geschieht: Eine harte Schale von Atomen unterdrückt die Gitterschwingungen und deren Wechselwirkung mit Elektronen. Dies führt zu höheren Fotoströmen und effizienteren Solarzellen.
Ihre Untersuchungen führten die ETH-Forschenden an der Schweizer Spallationsneutronenquelle am Paul Scherrer Institut (PSI) durch. Beim Beschuss der Kristalle mit Neutronen beobachteten die Wissenschaftler die Struktur und die Vibration der Atome in diesen winzigen Festkörpern. Die Gitterschwingungen der Nanokristalle wurden auch mithilfe von Supercomputern am Nationalen Hochleistungsrechenzentrum (CSCS) in Lugano simuliert. «Ohne Zugang zu diesen Grossforschungsanlagen wäre diese Arbeit nicht möglich gewesen. In der Schweiz sind wir in der glücklichen Situation, solch einzigartige Einrichtungen zur Verfügung zu haben», betont die ETH-Professorin.
Originalveröffentlichung
Meistgelesene News
Originalveröffentlichung
Deniz Bozyigit, Nuri Yazdani, Maksym Yarema, Olesya Yarema, Weyde Matteo Mario Lin, Sebastian Volk, Kantawong Vuttivorakulchai, Mathieu Luisier, Fanni Juranyi & Vanessa Wood; "Soft surfaces of nanomaterials enable strong phonon interactions"; Nature; 2016
Organisationen
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.