Katzen-Twist: Magneten mit neuen Eigenschaften
Heusler-Verbindung könnte sich als Material für die digitale Informationsverarbeitung und -speicherung erweisen
In der Informationsgesellschaft spielt die Verbesserung der Speicher eine immer größere Rolle. Derzeit arbeitet eine internationale Gruppe von Wissenschaftlern an der Erforschung eines Phänomens, das die nächste Revolution im Bereich der Speichertechnologie einleiten könnte. Ausgangspunkt ist die relativistische Physik Einsteins. Mit ihrer Hilfe können Magneten dazu gebracht werden, sich durch die innere Bewegung ihrer eigenen Elektronen zu drehen. "Wir können es mit einer Katze vergleichen, die sich im Fallen dreht, indem sie Schwanz, Kopf und Rumpf einsetzt", erklärt Prof. Dr. Jairo Sinova von der Johannes Gutenberg-Universität Mainz (JGU). "Dank des relativistischen Effekts kann sich der Magnet durch die innere Bewegung seiner eigenen Elektronen neu ausrichten." In den erforschten Materialien ändert ein elektrischer Strom, der durch den Magneten fließt, die Richtung der Magnetisierung und zwar abhängig davon, in welcher Richtung der Stromfluss verläuft. Wegbereiter für die Entdeckung und Erforschung dieses neuartigen Phänomens, genannt Spin Orbit Torque oder Spin-Bahn-Drehmoment, war unter anderen die Mainzer Forschungsgruppe um Jairo Sinova.
Der Effekt tritt in Materialien auf, die eine gebrochene Inversionssymmetrie aufweisen. Zuerst wurden Spin-Bahn-Drehmomente in dem synthetischen magnetischen Halbleiter GaMnAs beobachtet. GaMnAs ist das verdünnte Gegenstück zu den kristallinen Zinkblende-Strukturen von Silizium und Galliumarsenid, den beiden zentralen Materialien für die moderne Elektronik. In GaMnAs konnten Spin-Bahn-Drehmomente allerdings nur bei sehr niedrigen Temperaturen nachgewiesen werden, die eine technische Nutzung des Effekts praktisch unmöglich machen.
In Zusammenarbeit mit einem internationalen Forscherteam aus Prag, Cambridge, Würzburg, Jülich und Nottingham haben Sinova und seine Doktoranden Jacob Gayles und Libor Šmejkal nun ihre jüngsten Forschungsergebnisse veröffentlicht, die wegbereitend für die technische Nutzung von Spin-Bahn-Drehmomenten sein könnten. Dank der synergetischen Teamarbeit von Theoretikern und Experimentalphysikern gelang es, den Effekt der Spin-Bahn-Drehmomente in dem Kristall NiMnSb bei Raumtemperatur vorherzusagen und experimentell nachzuweisen. Die Auswahl von NiMnSb – eine Heusler-Verbindung aus Nickel, Mangan und Antimon – stützte sich dabei auf die systematische Analyse der Symmetrie der Kristallklassen in Kombination mit Ab-Initio-Berechnungen des Effekts. Dass die Wissenschaftler nun auch bei Raumtemperatur in der Lage sind, die Ausrichtung einzelner Magneten zu manipulieren, stellt einen wichtigen Schritt hin zu verbesserten magnetischen RAM-Architekturen für technische Anwendungen dar, welche rein elektrisch, energiesparsam und höchst skalierbar wären.
Originalveröffentlichung
Meistgelesene News
Originalveröffentlichung
C. Ciccarelli, L. Anderson, V. Tshitoyan, A. J. Ferguson, F. Gerhard, C. Gould, L. W. Molenkamp, J. Gayles, J. Železný, L. Šmejkal, Z. Yuan, J. Sinova, F. Freimuth & T. Jungwirth; "Room-temperature spin–orbit torque in NiMnSb"; Nature Physics; 2016
Themen
Organisationen

Holen Sie sich die Chemie-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.