Oberflächenchemie führt zu neuen Produkten
University of Basel, Department of Physics
Bei zahlreichen nanotechnologischen Anwendungen werden einzelne Moleküle auf Oberflächen platziert, damit sie bestimmte Funktionen erfüllen – beispielsweise elektrischen Strom zu leiten oder ein Lichtsignal auszusenden. Im Idealfall synthetisieren die Wissenschaftler diese teilweise recht komplexen chemischen Verbindungen direkt auf der Oberfläche. Mithilfe von ultrahochauflösenden Rasterkraftmikroskopen lassen sich die chemischen Reaktionen auf der Oberfläche Schritt für Schritt verfolgen. Die erhaltenen Daten erlauben zudem die Berechnung der genauen molekularen Struktur und der Energetik der Reaktionsschritte.
Mitarbeiter von Prof. Ernst Meyer von der Universität Basel haben für ihre Untersuchungen ein Molekül gewählt, das aus drei Benzolringen besteht, die über eine Dreifachbindung verbunden sind. Bringen die Forscher dieses Molekül auf eine Silberoberfläche auf, ordnen sich die Moleküle selbst zu einem gleichmässigen Muster an – es kommt jedoch nicht zu einer chemischen Reaktion.
Kupfer als Katalysator
Auf einer Kupferoberfläche dagegen reagieren die Moleküle bereits bei einer Temperatur von –123 °C. Katalysiert durch die Kupferatome, nimmt das Ausgangsmolekül zwei Wasserstoffatome auf und verändert seine Struktur und räumliche Anordnung. Wird die Probe auf 200 °C erwärmt, erfolgt ein weiterer Reaktionsschritt, bei dem es zur Ausbildung von zwei Fünferringen kommt. Eine weitere Temperaturerhöhung auf 400 °C bewirkt die Abspaltung von Wasserstoffatomen und die Ausbildung einer weiteren Kohlenstoff-Kohlenstoff-Bindung. Die beiden letzten Reaktionsschritte führen zu aromatischen Kohlenwasserstoffverbindungen, die bisher in Lösung nicht synthetisiert worden waren.
Die Forscher führten diese Untersuchungen im Ultrahochvakuum durch und konnten die Synthese mithilfe eines hochauflösenden Rasterkraftmikroskops mit einer Kohlenstoffmonoxid-Spitze verfolgen. Die vergleichenden Computerberechnungen führten zur genauen molekularen Struktur, die bestens mit den mikroskopischen Aufnahmen übereinstimmt.
Nanostrukturen nach Mass
Mit seinen Untersuchungen hat das internationale Forschungsteam gezeigt, dass Oberflächenchemie zu neuen Produkten führen kann. «Diese äusserst reine Form der Chemie liefert uns massgeschneiderte Nanostrukturen auf Oberflächen, die vielfältig eingesetzt werden können», kommentiert Meyer die Arbeiten, die massgeblich von Dr. Shigeki Kawai durchgeführt wurden. In dem vorgestellten Beispiel fungiert die Kupferoberfläche als Katalysator; die chemische Reaktion der Ausgangsmoleküle wird durch Wärmezufuhr gesteuert und lässt sich mittels Rasterkraftmikroskopie verfolgen.
Originalveröffentlichung
Shigeki Kawai, Ville Haapasilta, Benjamin D. Lindner, Kazukuni Tahara, Peter Spijker, Jeroen A. Buitendijk, Rémy Pawlak, Tobias Meier, Yoshito Tobe, Adam S. Foster, and Ernst Meyer; "Thermal control of a sequential on-surface transformation of a hydrocarbon molecule on copper surface"; Nature Communications; 2016
Meistgelesene News
Originalveröffentlichung
Shigeki Kawai, Ville Haapasilta, Benjamin D. Lindner, Kazukuni Tahara, Peter Spijker, Jeroen A. Buitendijk, Rémy Pawlak, Tobias Meier, Yoshito Tobe, Adam S. Foster, and Ernst Meyer; "Thermal control of a sequential on-surface transformation of a hydrocarbon molecule on copper surface"; Nature Communications; 2016
Themen
Organisationen
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für die chemische Industrie, Analytik, Labor und Prozess bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.