Ionische Flüssigkeiten vereinfachen Laserexperimente mit flüssigen Proben

20.10.2016 - Deutschland

Ein HZB-Team hat eine neue Methode entwickelt, um Moleküle in Lösung mit Laserexperimenten analysieren zu können. Dies war bisher schwierig, weil sich dafür die Probe im Vakuum befinden muss, Flüssigkeiten unter Vakuum aber verdampfen.  Dem Team ist es nun gelungen, das Lösungsmittel durch eine ionische Flüssigkeit zu ersetzen, die im Vakuum nicht verdampft: So können die  Moleküle mit einem Laserpuls angeregt werden, und das Verhalten der angeregten Zustände im Vakuum gemessen werden. Dies gibt Aufschluss über physikalische und chemische Prozesse in neuartigen flüssigen Energie-Materialien, wie sie etwa in organischen Solarzellen oder Katalysatoren zum Einsatz kommen.

HZB

Ein Laserpuls versetzt die gelösten Moleküle in einen angeregten elektronischen Zustand. Dann kann die Bindungsenergie der angeregten Elektronen gemessen werden. Solche Laserexperimente sind nur im Ultrahochvakuum möglich.

HZB

Das Histogramm zeigt die Intensität der gemessenen Elektronen (Farbleiste rechts) mit bestimmter Bindungsenergie kurze Zeit nach der Anregung. Daraus lässt sich rekonstruieren, wie angeregte Zustände in den Grundzustand zurückfallen.

HZB
HZB

Nicht nur in der Natur finden zahlreiche Prozesse in Lösung statt, sondern auch in der Technik: Zum Beispiel bestehen organische Solarzellen aus gelösten Farbstoffmolekülen, und auch eine neue Klasse von Katalysatormaterialien besteht aus Nanopartikeln in gelöster Form. Um zu verstehen, welche Prozesse Licht in diesen Materialsystemen auslöst, eignet sich die Methode der zeitaufgelösten Photoelektronen-Spektroskopie (PES): Ein genau abgestimmter Anregungs-Laserpuls versetzt die Probe in einen angeregten elektronischen Zustand, worauf sogenannte Abfrage-Laserpulse in kurzen Zeitabständen die Bindungsenergie der angeregten Elektronen abtasten. Daraus lässt sich rekonstruieren, wie die angeregten Elektronen in den Grundzustand zurückfallen. Dies erlaubt Rückschlüsse auf die physikalischen, chemischen und biologischen Prozesse, die in diesen Materialien möglich sind. Allerdings sind solche Anregungs-Abfrage-Laserexperimente (Pump-Probe) nur im Ultrahochvakuum möglich. Für feste Proben ist die Methode gut etabliert, für flüssige Proben jedoch nicht. Flüssigkeiten verdampfen im Vakuum sofort. Sie konnten deshalb bislang nur mit aufwändigen Techniken wie dem Liquid-Micro Jet untersucht werden.

Ionische Flüssigkeiten verdampfen nicht

Nun hat eine Gruppe um Prof. Dr. Emad Aziz erstmals gezeigt, dass es eine einfachere Alternative gibt, um PES-Experimente auch an gelösten Proben durchzuführen: Sie ersetzten das organische Lösungsmittel durch eine so genannte ionische Flüssigkeit. Diese besteht aus organischen Molekülen, die sich untereinander durch ionische Kräfte (also wie ein Salz) vernetzen und bei Raumtemperatur flüssig sind. Ionische Flüssigkeiten verdampfen selbst im Ultrahochvakuum nicht.

Roter Farbstoff angeregt

Es gelang ihnen, einen roten Farbstoff, der als Prototyp für Farbstoffe in organischen Solarzellen gilt, in einer ionischen Flüssigkeit zu lösen und mit Photoelektronen-Spektroskopie zu untersuchen. Dabei regten sie den Farbstoff mit einem Laserpuls an. In der ersten Pikosekunde (10-12s) danach tastete der Probe-Puls in 150 Einzelschritten die Bindungsenergie der angeregten Elektronen ab. Das aus diesen Daten erstellte Histogramm zeigt, über welche Zwischenzustände die angeregten Elektronen ihre Energie abgeben. Da die lichtinduzierten Prozesse in diesem Farbstoff bereits gut untersucht sind, konnten die Physiker ihre experimentellen Daten mit bereits vorliegenden Resultaten vergleichen.

Resultate stimmen überein

„Das alternative Lösungsmittel hat keinen Einfluss auf die ultraschnellen Prozesse: Alle Prozesse, die im Lauf dieser ersten Pikosekunde ablaufen, decken sich perfekt mit Resultaten aus Messungen aber auch mit Simulationen der Prozesse im konventionellen Lösungsmittel“, erklärt Mario Borgwardt, der die Experimente im Rahmen seiner Doktorarbeit durchgeführt hat. Ein wichtiges Ergebnis: Denn die schnellen Prozesse sind es, die zum Beispiel in einer Solarzelle zu Verlusten führen. Als Fazit hält Emad Aziz fest: „Ionische Flüssigkeiten sind eine gute Alternative zu herkömmlichen Lösungsmitteln, um Moleküle in Lösung mit zeitaufgelöster Photoelektronen-Spektroskopie zu analysieren.“

Ausblick: Untersuchungen an lichtreaktiven Katalysatoren

Nun will das Team auch Nanopartikel, insbesondere Nanodiamanten aus Kohlenstoff, in ionischen Flüssigkeiten lösen und mit PES untersuchen. In einem großen Kooperationsprojekt, DIACAT, an dem das HZB mit vielen Partnern arbeitet, testen sie die Eignung von Nanodiamanten als lichtreaktive Katalysatoren für die Erzeugung von solaren Brennstoffen. Die neue Methode kommt da gerade zur richtigen Zeit.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

DynaPro NanoStar II

DynaPro NanoStar II von Wyatt Technology

NanoStar II: DLS und SLS mit Touch-Bedienung

Größe, Partikelkonzentration und mehr für Proteine, Viren und andere Biomoleküle

Eclipse

Eclipse von Wyatt Technology

FFF-MALS System zur Trennung und Charakterisierung von Makromolekülen und Nanopartikeln

Neuestes FFF-MALS-System entwickelt für höchste Benutzerfreundlichkeit, Robustheit und Datenqualität

Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

Alle FT-IR-Spektrometer Hersteller