Kriechendes Gel

Photosensitives selbstoszillierendes Gel als Modell für biologische Kriechbewegungen

26.10.2016 - China

Eine gerichtete Fortbewegung ist für uns eine Selbstverständlichkeit, kommt aber nur durch ein koordiniertes Zusammenspiel vieler komplexer Prozesse zustande – sogar das vermeintlich simple Kriechen von Würmern oder Schnecken. Auf Basis eines Gels, das von selbst periodisch an- und abschwillt, konnten Forscher jetzt ein Modell für die wellenförmigen muskulären Kontraktionen und Relaxationen beim Kriechen entwickeln. Wie sie in der Zeitschrift Angewandte Chemie berichten, gelang es durch inhomogene Bestrahlung, zwei verschiedene Arten von Kriechbewegung im Gel hervorzurufen.

Kriechen entsteht aufgrund von Wellen, die durch Muskeln wandern. Diese Wellen können in dieselbe Richtung laufen, in die das Tier kriecht (direkte Wellen), also vom Schwanzende zum Kopf – aber sie können auch entgegengesetzt, also vom Kopf zum Schwanz, wandern (retrograde Wellen). Während z.B. Landschnecken die erste Variante verwenden, kriechen Regenwürmer und Meeresnapfschnecken mithilfe retrograder Muskelwellen. Käferschnecken (Polyplacophora) können zwischen beiden wechseln.

Mit einem chemischen Modell, einem selbstoszillierenden Gel, wollen die Forscher um Qingyu Gao von der China University of Mining and Technology (Jiangsu, China) und Irving R. Epstein von der Brandeis University (Waltham, USA) einige der vielen noch offenen Fragen rund um diese Kriechvorgänge klären.

Ein Gel ist ein molekulares Netz, in dessen „Maschen“ eine Flüssigkeit gebunden ist – in diesem Fall enthält diese alle Zutaten für eine oszillierende chemische Reaktion („Chemische Uhr“). Einen Bestandteil des Reaktionssystems, einen Ruthenium-Komplex, bauten die Wissenschaftler direkt in das Netz ein: Während der Reaktion wechselt das Ruthenium periodisch zwischen zwei Oxidationsstufen, Ru2+ und Ru3+. In einem Zustand bindet das Gel mehr, im anderen weniger Flüssigkeit – es schwillt periodisch an und ab. Diese Bereiche breiten sich wellenförmig aus und erinnern so an die Muskelwellen beim Kriechen.

Auch Lichteinstrahlung löst den Wechsel der Oxidationsstufen aus. Wird nun die rechte Hälfte des Gels stärker bestrahlt als die linke, oszilliert das Gel rechts schneller als links und die resultierenden Wellen wandern von rechts nach links. Ab einem bestimmten Unterschied in der Bestrahlungsstärke entstehen wurmartige Bewegungen des Gels von links nach rechts, also eine retrograde Fortbewegung. Wird der Unterschied weiter erhöht, kommt das Gel zum Stillstand. Eine weitere Vergrößerung setzt das Gel wieder in Bewegung, aber in die andere Richtung, eine direkte Fortbewegung resultiert. Die ungleiche Bestrahlung spielt eine Rolle analog zu Verankerungssegmenten und Anhängseln (wie Gliedmaßen und Flügeln) während der Zellwanderung und der Fortbewegung von Tieren: Die Richtung wird gesteuert, indem sie die eine Bewegung verstärken und/oder die entgegengerichtete Bewegung hemmen.

Durch Modellrechnungen gelang es den Forschern, die Vorgänge zu beschreiben. Innerhalb des Gels gibt es Regionen, in denen Zug- und Regionen, in denen Schubkräfte vorherrschen. Variationen der Bestrahlungsintensität führen hier zu unterschiedlichen Veränderungen der Reibungskräfte und der Spannungen. Werden diese Effekte aufsummiert, lässt sich für ein Volumenelement des Gels vorhersagen, in welche Richtung es sich bewegt.

Eine wichtige erste Erkenntnis aus dem Modell: Spezielle Änderungen der viskoelastischen Eigenschaften des von Schnecken und Würmern abgesonderten Schleims sind, anders als angenommen, für eine gerichtete Bewegung nicht zwingend erforderlich.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...