Die rostfressende Mikrobe
Lange gesucht, endlich gefunden
Schon lange hegten Mikrobiologen den Verdacht, dass es diesen kleinen Gesellen geben muss. Doch gefunden haben sie ihn nicht – bis jetzt: Die Mikrobe, die sowohl Methan als auch Eisen “frisst”. Forscher vom Max-Planck-Institut für Marine Mikrobiologie und der niederländischen Radboud Universität haben nun einen Mikroorganismus entdeckt, der die Reduktion von Eisen mit der Oxidation von Methan verbindet. Er könnte dadurch eine bedeutende Rolle für die weltweiten Emissionen dieses starken Treibhausgases spielen.

Einer der Bioreaktoren, in denen Kartal und seine Kollegen die rostfressenden Mikroben fanden.
MPI für Marine Mikrobiologie

Der Twentekanaal nahe Enschede.
MPI für Marine Mikrobiologie


Manche Prozesse erzeugen Methan, andere verbrauchen es – und das Gleichgewicht zwischen den beiden bestimmt die weltweite Freisetzung dieses potenten Treibhausgases in unsere Atmosphäre. Ein internationales Forscherteam um Boran Kartal vom Max-Planck-Institut für Marine Mikrobiologie (MPI Bremen) hat jetzt einen Mikroorganismus entdeckt, der Methan mit Hilfe von Eisen in Kohlendioxid umwandeln kann. Im Zuge dieser Umwandlung wird reduziertes Eisen frei, das dann anderen Organismen zur Verfügung steht. So setzt dieser kleine Eisenfresser (es handelt sich dabei übrigens um eine sogenannte Archaee aus der Ordnung der Methanosarcinales) eine Energiekaskade in Gang, die sowohl den Eisen- als auch den Methankreislauf beeinflusst.
Ein heißer Kandidat für Kläranlagen?
Doch sie fressen nicht nur Rost, diese Archaeen haben noch einen weiteren Trick im Ärmel. Sie können Nitrat in Ammonium umwandeln: die Lieblingsspeise der bekannten anammox-Bakterien, die wiederum Ammonium ganz ohne Sauerstoff in Stickstoffgas umwandeln können. “Das ist wichtig in der Abwasserreinigung”, sagt Kartal, der kürzlich von der Radboud Universität ans MPI Bremen wechselte. “Man kann einen Bioreaktor bauen, der zweierlei Mikroorganismen enthält, die ohne Sauerstoff sowohl Methan als auch Ammonium umsetzen können. In diesem könnte dann gleichzeitig Ammonium, Methan und oxidierter Stickstoff aus dem Abwasser in harmloses Stickstoffgas und Kohlendioxid umgewandelt werden. Kohlendioxid ist deutlich weniger klimaaktiv als Methan.“ Zudem könnte dieser Prozess auch in Reisfeldern wichtig sein, die etwa ein Fünftel der anthropogenen Methanfreisetzung verursachen.
Näher als erwartet
Immer wieder gab es in früheren Untersuchungen Hinweise auf solche eisenabhängigen Methanoxidierer. Aber bisher war es keinem Forscher gelungen, sie zu finden und zu isolieren. Und nun tauchten sie überraschenderweise direkt vor unserer Haustür auf. “Nach Jahren der Suche versteckten sie sich in unserer eigenen Probensammlung“, berichtet Mike Jetten von der Radboud Universität lächelnd. “Wir fanden sie schließlich in Anreicherungskulturen aus dem Twentekanaal in den Niederlanden, die sich seit Jahren in unserem Labor befanden.”
“Wir sahen uns den genetischen Fingerabdruck dieser Mikroorganismen an und vermuteten“, so Kartal, „dass sie im Zuge der Methanoxidation partikuläres Eisen – im Grunde nichts anderes als Rost – umsetzen können. Diese Vermutung überprüften wir dann im Labor. Und tatsächlich – diese Mikroben schafften es.” Als nächstes will Kartal nun die dahinterliegenden Prozesse genauer unter die Lupe nehmen. “Die vorliegenden Ergebnisse füllen eine der letzten Lücken in unserem Verständnis der anaeroben Methanoxidation. Jetzt wollen wir ergründen, welche Proteinkomplexe an diesem Prozess beteiligt sind.”
Vor Milliarden von Jahren
Die Entdeckung der eisenfressenden Methanoxidierer kann auch ein neues Licht auf die Frühgeschichte unseres Planeten werfen. Schon vor 4 bis 2.5 Milliarden Jahren könnten die Methanosarcinales in der methanreichen Atmosphäre der eisenhaltigen Urozeanen eine Blütezeit erlebt haben. Wenn wir mehr über deren Stoffwechsel lernen, kann das also auch die anhaltende Diskussion über den Eisenkreislauf auf der frühen Erde einen großen Schritt weiterbringen.
Originalveröffentlichung
Meistgelesene News
Originalveröffentlichung
Katharina F. Ettwig, Baoli Zhu Daan R. Speth, Jan T. Keltjens, Mike S. M. Jetten, Boran Kartal; "Archaea catalyze iron-dependent anaerobic oxidation of methane"; PNAS; 2016
Themen
Organisationen
Weitere News aus dem Ressort Wissenschaft

Holen Sie sich die Chemie-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.
Meistgelesene News
Weitere News von unseren anderen Portalen
Zuletzt betrachtete Inhalte
Gute Chancen für Provadis-Auszubildende im Industriepark Höchst - Industriepark-Firmen legen Wert auf hohes Ausbildungsniveau

ACTEGA WIT - Lincolnton, USA
Lonza Update zum Geschäftsgang im ersten Quartal 2010

Eisen hält den Dynamo im Erdkern am Laufen

Neuartige Strategie für Zink-Ionen-Batterien für alle Klimazonen - "Diese Studie zeigt, wie leistungsfähig diese Batterien sind, sowohl in Bezug auf die Kapazität als auch auf ihre Fähigkeit, in einem breiten Temperaturbereich zu arbeiten"

Neue Hoffnung für preisgünstige Natrium-Akku - Deutsch-russische Studie weist neue Perspektiven für die Batterieforschung auf

Nanobläschen in Nanotröpfchen - Ultraschnelle Reaktion von laserangeregtem supraflüssigem Helium untersucht

ebm-papst Ibérica S.L. - San Fernando Henares, Madrid, Spanien
Sanofi-Aventis strebt Zulassung eines Malaria-Medikaments in Afrika an
BREN-Tower

Applied Research Europe GmbH - Berlin, Deutschland
