Einblicke ins Atom
Forscher stellen neuen Mechanismus zur Untersuchung von Atomkernen vor
Anne Günther
Und genau das haben Prof. Fritzsche und seine Kollegen getan. Das Team um den theoretischen Physiker von der Universität Jena und dem Helmholtz-Institut Jena stellt in der Fachzeitschrift „Physical Review Letters“ eine Methode vor, mit der die Forscher den Schleier der Elektronenwolke lüften und die Atomkerne gezielt anregen können. Dabei gelingt es ihnen nicht nur die Elektronenwolke zu durchdringen; sie nutzen die eigenwilligen Sprünge der Elektronen sogar, um neue Kernzustände zu ermöglichen.
Grundlage der Untersuchungsmethode ist die sogenannte Zwei-Photonen-Emissionsspektroskopie. „Dazu schickt man elektromagnetische Strahlung in eine Probe des zu untersuchenden Elementes“, erläutert PD Dr. Andrey Volotka aus Fritzsches Arbeitsgruppe, der Erstautor der aktuellen Studie ist. Die Elektronen in der Atomhülle werden von der Strahlung angeregt und gehen in einen energetisch höheren Zustand über, in dem sie allerdings nur für sehr kurze Zeit verweilen und von wo sie anschließend in ihren ursprünglichen Zustand zurückfallen. Jedes angeregte Atom gibt dabei seine Energie in Form zweier Lichtteilchen (Photonen) wieder ab. „Dem von uns vorgeschlagenen Mechanismus zufolge wird eines dieser Photonen jedoch vom Atomkern absorbiert und regt diesen selbst an“, so Andrey Volotka. Diese Anregung des Atomkerns lässt sich – ebenso wie die des verbleibenden zweiten Photons – spektroskopisch nachweisen. Die beobachtbaren Signale in den Photonenspektren geben den Forschern Aufschluss über die Struktur des Atomkerns und dessen Wechselwirkung mit den Elektronen. „Damit können sogenannte isomere Zustände der Atomkerne bestimmt werden, die vergleichsweise langlebig sind“, nennt Prof. Fritzsche einen Vorteil der Methode. „Langlebig“ bedeutet für die Physiker in diesem Fall von Bruchteilen einer Sekunde bis hin zu mehreren Minuten. Die in gängigen Stoßexperimenten angeregten Kernzustände haben dagegen typische Lebensdauern im Attosekundenbereich.
Bisher ist dieser neue Mechanismus allerdings nur ein theoretischer Vorschlag. Die Jenaer Physiker konnten diesen aber gemeinsam mit Kollegen aus Braunschweig, Darmstadt und Dresden bereits in Computersimulationen bestätigen. „Das ist in erster Linie Grundlagenforschung“, macht Prof. Fritzsche deutlich. Vielleicht, so der Physiker, lassen sich die Erkenntnisse jedoch eines Tages auch nutzbringend anwenden: etwa in Form hochpräziser „Atomuhren“, die dann auf Kernübergängen beruhen und eine nennenswert höhere Präzision versprechen.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Meistgelesene News
Weitere News von unseren anderen Portalen
Verwandte Inhalte finden Sie in den Themenwelten
Themenwelt Spektroskopie
Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!
Themenwelt Spektroskopie
Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!