Mikroplastik in der Umwelt: Von der Nanoforschung lernen

09.03.2017 - Österreich

Plastik und Mikroplastik – also zu kleinen Partikeln zerriebener Kunststoff – sind heute als Abfallprodukte in der Umwelt weit verbreitet. Die Forschung beginnt erst ihren Einfluss auf die Ökosysteme zu verstehen. Umweltgeowissenschafter um Thilo Hofmann von der Universität Wien haben nun gezeigt, was man aus der Nanoforschung für die Analyse und Expositionsbewertung von Mikroplastik lernen kann und welche Fehler nicht wiederholt werden sollten.

bilyjan, pixabay.com, CC0

"Mikroplastik als Quelle für die Verschmutzung von Gewässern und Meeren ist ein nicht zu unterschätzendes Problem geworden", sagt Thorsten Hüffer vom Department für Umweltgeowissenschaften der Universität Wien. Forscher schätzen den Eintrag von Mikroplastik, also Teilchen mit einer Größe unter fünf Millimetern, auf rund acht Millionen Tonnen pro Jahr in küstennahen Meeresregionen. Den Hauptanteil macht sogenanntes sekundäres Mikroplastik aus, das durch den Zerfall verschiedenster Plastikprodukte entsteht. Industriell eingesetztes Mikroplastik, z.B. als Bestandteil von Kosmetika, spielt mit einem Anteil von geschätzten 0,1 bis 3 Prozent des Mikroplastiks in der Umwelt eine untergeordnete Rolle.

Was Mikroplastik in der Umwelt per se bewirkt und welche Gefahr möglicherweise von ihm ausgeht, ist zum Gutteil noch nicht bekannt. Fragen zu Eigenschaften und Verhalten kleiner Partikel stellen sich Nanoforscher seit langem – Thilo Hofmann und sein Team präsentieren in ihrer aktuellen Untersuchung bereits existierende Ansätze und Methoden. Das Wissen aus der Nanoforschung kann auf Grundlage der ähnlichen Eigenschaften beider Schadstoffgruppen auch auf Mikroplastik übertragen werden, schreiben die Umweltgeowissenschafter. Die Forschung zu Mikroplastik sollte demnach auch noch stärker als bisher auf interdisziplinäre Zusammenarbeit und die Einbeziehung der Erkenntnisse aus der Nanoforschung setzen.

Künstliche Nanopartikel als Wegweiser

Künstlich hergestellte Nanopartikel (1 Nanometer = 1 millionstel Millimeter) finden heute bereits breite Anwendung in der Industrie, darunter als Zusatz in Sonnencremes, Nahrungsmitteln und Schleifmaterialien. Die Partikel können während der Produktion, Anwendung oder Entsorgung in die Umwelt gelangen. Nanopartikel wie auch das etwas größere Mikroplastik sind Schadstoffe, bei denen herkömmliche Analysestrategien nicht greifen. Konventionelle Schadstoffe liegen in der Regel als individuelle, gelöste Substanzen mit einheitlichen Eigenschaften vor. "Mikroplastik und Nanopartikel dagegen bestehen aus heterogenen Partikelgemischen, die mehr oder weniger stabile Suspensionen bilden", sagt Nanoforscherin Antonia Praetorius.

Nicht nur die chemische Zusammensetzung bestimmt das Verhalten und die Toxizität dieser partikulären Schadstoffe. Auch ihre Größe und Form tragen maßgeblich bei. Je kleiner die Teilchen sind, desto größer ist z.B. auch ihre reaktive Oberfläche. "Wir benötigen hier eine andere Denkweise", so Praetorius. Es braucht neue Ansätze zur Abschätzung von Emissionen, zur Charakterisierung (z.B. Bestimmung von Größenverteilung zusätzlich zur chemischen Zusammensetzung), zur Angabe von Konzentrationen (z.B. Anzahl- statt Massenkonzentrationen) und zur Verhaltensanalyse und -modellierung.

Über Fehler und Möglichkeiten

"Es gibt Fehler, aus denen wir nach über zehn Jahren Erfahrung in der Erforschung des Umweltverhaltens von Nanopartikeln gelernt haben und die man beim Mikroplastik gleich vermeiden könnte", so Studienautor Hüffer. So sollte man etwa Risikobewertungen nicht nur auf Grundlage von Konzentrationen der Stoffe in einem Medium tätigen, sondern unter Einbeziehung der weiteren Eigenschaften. Die Nanoforschung habe darüber hinaus gezeigt, dass es in der Regel mehrere Methoden – z.B. aus der Mikroskopie, Massenspektrometrie und Chromatographie – braucht, um Partikel in ihren Eigenschaften vollumfänglich zu bestimmen. Zudem solle die Laborforschung nicht nur an unveränderten Partikeln aus dem Handel erfolgen. Wichtig seien vielmehr auch, mit in der Umwelt gealterten oder verwitterten Partikeln zu arbeiten sowie realitätsnahe Szenarien, z.B. im Hinblick auf zu untersuchende Konzentrationen, festzulegen.

Eine zentrale Forschungsfrage ist, in welcher Form und in welcher Geschwindigkeit sich der Plastikmüll zersetzt und wie der Prozess unter verschiedenen Umweltbedingungen abläuft. "Die Entstehung von sekundärem Mikroplastik, also der Zersetzungsprozess von Plastik, ist einer der Hauptunterschiede zu Nanopartikeln", sagt Hüffer. Die Quellen von Mikroplastik und seine Umwandlung seien im Vergleich zu künstlichen Nanopartikeln vielschichtiger. Die Frage, wie aus dem Plastiksackerl letztlich Mikroplastik entsteht, ist damit ohne die Nanoforschung zu lösen.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

NANOPHOX CS

NANOPHOX CS von Sympatec

Partikelgrößenanalyse im Nanobereich: Hohe Konzentrationen problemlos analysieren

Zuverlässige Ergebnisse ohne aufwändige Probenvorbereitung

Partikelanalysatoren
DynaPro Plate Reader III

DynaPro Plate Reader III von Wyatt Technology

Screening von Biopharmazeutika und anderen Proteinen mit automatisierter dynamischer Lichtstreuung

Hochdurchsatz-DLS/SLS-Messungen von Lead Discovery bis Qualitätskontrolle

Partikelanalysatoren
Eclipse

Eclipse von Wyatt Technology

FFF-MALS System zur Trennung und Charakterisierung von Makromolekülen und Nanopartikeln

Neuestes FFF-MALS-System entwickelt für höchste Benutzerfreundlichkeit, Robustheit und Datenqualität

Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...