Bismut-Rekord: Unterschiedliche Atomradien erzwingen Entmischung
Wiley-VCH
Bismut ist das schwerste Metall, das praktisch nicht radioaktiv ist. „Anders als seine direkten Nachbarn im Periodensystem der Elemente – Blei und Polonium – ist es völlig ungiftig“, sagt Dehnen; „in Form bestimmter Salze findet es sogar Anwendung in der Medizin.“ In elementarer Form kommt es als Mineral vor. Chemiker stellt es jedoch vor Probleme, wie Dehnen darlegt: „Es ist nicht leicht, Bismut-Atome in direkte Metall-Metall-Bindungen zu zwingen. Bis vor kurzem wurde die Bildung von vielatomigen Bismut-Käfigen als derart ungünstig angesehen, dass man davon ausging, mit diesem Element keine großen und komplexen Strukturen realisieren zu können.“
In ihrer aktuellen Publikation beschreiben Dehnen und Wilson, wie die Synthese des neuen Moleküls vonstattengeht: Schmilzt man die chemischen Elemente Kalium, Germanium und Bismut im Verhältnis 2:1:1 zusammen und extrahiert den dabei entstehenden Feststoff mit dem Lösungsmittel Ethylendiamin, so ergibt sich zunächst eine tiefblaue Lösung.
„Mit der Zeit ändert sich die Farbe der Lösung jedoch von Blau über Grün nach Rotbraun, wobei dunkelrote Nadeln kristallisieren“, berichtet Wilson; die Kristallnadeln enthalten die neuartige Bismut-Verbindung – ein Salz, das ein Molekül der Summenformel (Ge4Bi14)4– enthält. „Trotz der langen Reaktionszeit ist die Reaktion reproduzierbar“, betonen Dehnen und Wilson: „Die Produktbildung kann bei Raumtemperatur nach etwa 60 Tagen beobachtet werden, bei 5° C nach zirka 90 Tagen.“
Das rekordverdächtige Molekül besteht aus zwei Bismut-Käfigen, die je sieben Atome besitzen; sie teilen sich eine gemeinsame Kante, die aus vier Germanium-Atomen besteht. „Das Gesamtgebilde ist negativ geladen, es handelt sich somit um das Anion der salzartigen Titelverbindung“, legt Dehnen dar. In der „Cambridge Structural Database“, der wichtigsten Strukturdatenbank für entsprechende Stoffe, findet sich kein Molekül mit der gleichen Gesamtstruktur.
Worauf ist die strikte Trennung der Elementsorten in der Verbindung zurückzuführen? „In verwandten Verbindungen mit anderen Elementkombinationen war bisher immer ein möglichst gleichmäßige Verteilung verschiedener Atomsorten in den Molekülen präferiert worden“, führt Dehnen aus. Das Forschungsteam vermutet, dass die Entmischung auf den extrem unterschiedlich großen Atomradien beruht – ein Phänomen, was von makroskopischen Metalllegierungen bekannt ist; hier wurde dies auf molekularer Skala nachvollzogen.
Wie genau sich das große Bismut-Polyanion bildet, haben die Autoren noch nicht herausgefunden. „Dies wird erst möglich sein, wenn man die Zwischenstufen nachweisen kann, was in diesem Fall aber besonders schwierig ist“, schreiben Dehnen und Wilson.
Originalveröffentlichung
Robert J. Wilson & Stefanie Dehnen; "(Ge4Bi14)4−: Ein Fall von “Element-Entmischung” auf molekularer Skala"; Angewandte Chemie; 11/2017
Meistgelesene News
Originalveröffentlichung
Robert J. Wilson & Stefanie Dehnen; "(Ge4Bi14)4−: Ein Fall von “Element-Entmischung” auf molekularer Skala"; Angewandte Chemie; 11/2017
Organisationen
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für die chemische Industrie, Analytik, Labor und Prozess bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.