Das anwachsende Ende der Ordnung
Mermin-Wagner-Fluktuationen experimentell nachgewiesen
Universität Konstanz
Anhand eines Modellsystems aus sogenannten Kolloiden konnte Peter Keim nachweisen, dass in niedrigdimensionalen Systemen langsam, aber stetig anwachsende Fluktuationen in den Abständen der Teilchen auftreten: Die Teilchen scheren aus dem perfekten Raster aus, sind mal dichter beieinander, mal weiter auseinander. Eine Kristallbildung über lange Distanzen hinweg ist in niedrigdimensionalen Materialien somit nicht möglich.
„Das Mermin-Wagner-Theorem ist oft derart interpretiert worden, dass es in zweidimensionalen Systemen überhaupt keine Kristalle geben dürfe. Das ist falsch: Vielmehr wachsen in zweidimensionalen Systemen langwellige Dichtefluktuationen logarithmisch an und zerstören die Ordnung nur auf langen Distanzen“, schildert Peter Keim. In kleinen Systemen von nur wenigen hundert Teilchen kann eine Kristallbildung also sehr wohl eintreten. Je größer die Systeme aber werden, desto stärker wachsen die Unregelmäßigkeiten in den Abständen der Teilchen an, was eine Kristallbildung auf langen Distanzen schließlich verhindert. Peter Keim gelang es ferner, die Wachstumsrate dieser Fluktuationen zu vermessen: Es handelt sich dabei um ein sogenanntes logarithmisches Wachstum, die langsamste Form eines monotonen Anstiegs. „Die Störung der Ordnung hat aber nicht nur einen strukturellen Aspekt, sondern hinterlässt auch Spuren in der Dynamik der Teilchen“, führt Keim weiter aus.
Das Mermin-Wagner-Theorem gehört zu den Standardfragestellungen der statistischen Physik und wurde erst jüngst in Zusammenhang mit der Nobelpreisverleihung in Physik erneut diskutiert: Michael Kosterlitz, der Nobelpreisträger des Jahres 2016, hatte in einem Kommentar veröffentlicht, wie er zusammen mit David Thouless auf die Idee kam, sogenannte topologische Phasenübergänge in niedrigdimensionalen Materialien zu untersuchen: Es sei der Widerspruch gewesen zwischen einerseits dem Mermin-Wagner-Theorem, das die Existenz von perfekten niedrigdimensionalen Kristallen verbietet, sowie andererseits Computersimulationen, die nichtsdestotrotz eine Kristallisation in zweidimensionalen Systemen andeuteten. Dieser vermeintliche Widerspruch lässt sich nun mit dem Nachweis von Peter Keim und seinem Forschungsteam auflösen: Auf kurzen Distanzen ist eine Kristallbildung sehr wohl möglich, auf langen Distanzen nicht.
Das Konstanzer Projekt bündelt Daten aus vier Generationen von Doktorarbeiten. Der direkte Nachweis der Mermin-Wagner-Fluktuationen erfolgte anhand der Dynamik in ungeordneten, amorphen, das heißt glasartigen zweidimensionalen Festkörpern – ebenso wie im Fall der nahezu zeitgleich erschienenen Arbeiten aus Japan und den USA. Für zweidimensionale Kristalle steht der direkte experimentelle Nachweis hingegen noch aus.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.