Wie sich lange Objekte maximal zusammenknüllen lassen

21.06.2017 - Deutschland

Die optimale Packung von lang gestreckten Objekten in engen Kapseln beschäftigt Naturwissenschaftler und Ingenieure schon seit geraumer Zeit. Wie effektiv sich quasi-eindimensionale Objekte zufällig zusammenfalten, hat nun ein internationales Physiker-Team untersucht. Zu ihnen gehört auch Dr. Reza Shaebani aus der Arbeitsgruppe um Professor Ludger Santen. Er entwickelte ein theoretisches Modell zum Verdichtungsprozess von Drähten.

Shaebani, Saar-Uni

Drähte können sich auf unterschiedliche Art und Weise zusammenknüllen – von sehr geordnet bis sehr ungeordnet. Geordnete Zustände (li) sind dichter gepackt als unordentliche Zustände (re).

Seit Johannes Keplers Hypothese über die effektivste Methode, Kanonen auf einem Schlachtschiff zu stapeln, haben Wissenschaftler über die maximal erreichbare Verdichtung von Objekten nachgegrübelt. Wundersamer Weise befindet sich auch unser gesamtes Erbgut in Form eines meterlangen DNA-Stranges dicht gepackt im winzigen Zellkern jeder Körperzelle. Den Verdichtungsprozess von quasi-eindimensionalen Objekten – wie kettenförmigen DNA-Molekülen oder Drähten – konnten jetzt Physiker der Universität Amsterdam, dem iranischen Institute for Advanced Studies in Basic Sciences (IASBS) und der Universität des Saarlandes anhand von Experimenten und einem theoretischen Modell genauer beschreiben.

In ihren Versuchen verstauten die niederländischen Forscher unterschiedlich dicke Plastik-Drähte mit variabler Elastizität und Reibung in einer runden Kapsel. Um zu erfassen, wie stark sich die Drähte zusammenknüllen, wurde die jeweils im Endzustand erreichte „Packungsdichte“ gemessen. Parallel dazu gelang es dem promovierten Saarbrücker Physiker Reza Shaebani, den Verdichtungsprozess mithilfe eines theoretischen Modells zu beschreiben, das für stark ungeordnete Systeme zu den gleichen Ergebnissen führte. Es berücksichtigt die Dicke des Drahts, seine Biegsamkeit und die Fähigkeit der Stränge, gut aneinander vorbeizugleiten. Der Vorteil seines Modells liegt darin, dass es weitaus weniger rechenaufwändig ist als Vorgängermodelle.

„Wie erwartet, bestimmen die Eigenschaften des Drahtes die Effektivität des Verdichtungsprozesses“, berichtet Reza Shaebani. Die Studie habe aber auch einige überraschende Ergebnisse hervorgebracht: So seien dünnere Drähte am Ende weniger dicht gepackt als dicke. „Um die gleiche Dichte zu erreichen, müsste ein dünner Draht länger sein, doch bei zunehmender Länge stehen ihm immer weniger Hohlräume zur Verfügung – das ist ein wechselwirkendes System“, erklärt der Physiker. Je nach Draht-Eigenschaften ändert sich auch die Anordnung der Drähte: Eine unordentliche Knäuelstruktur entsteht dann, wenn der Draht wenig plastisch ist und wenn die Reibung zwischen den Strängen hoch ist.

Die Studie liefert einen neuen Einblick in die Mechanismen, die dem „Verknüllen“ von Drähten mit plastischen und elastischen Eigenschaften zugrunde liegen. So können die untersuchten elastoplastischen Drähte als Modellsysteme für DNA-Moleküle und andere Biopolymere dienen. Dies könnte beispielsweise zu innovativen Behandlungsmethoden von Arterienerweiterungen (Aneurysmen) führen. Potenzielle Bedeutung haben die Ergebnisse auch für industrielle Prozesse, bei denen man oft am umgekehrten Prozess, dem Entwirren von Drähten, interessiert ist.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Revolutioniert künstliche Intelligenz die Chemie?