Dynamische Katalysatoren für saubere Stadtluft

Dynamische Struktur von Platinpartikeln optimiert Abgasnachbehandlung

18.10.2017 - Deutschland

Den Schadstoffausstoß von Kraftfahrzeugen zu verringern und strenge Abgasnormen gerecht zu werden, ist eine wesentliche Herausforderung in der Katalysatorentwicklung. Ein neues Katalysatorkonzept könnte helfen, auch beim Kaltstart von Motoren und im Stadtverkehr Abgase effizient nachzubehandeln und teures Edelmetall einzusparen. Es nutzt die Wechselwirkung zwischen Platin und dem Ceroxidträger, um die Katalyseaktivität durch kurzzeitige Änderungen in der Motorbetriebsweise zu kontrollieren.

Gänzler/KIT

Ein Autokatalysator wandelt giftige Kohlenmonoxid (CO) in ungiftiges Kohlendioxid (CO2) um und besteht aus Cer (Ce), Sauerstoff (O) und Platin (Pt).

Platin wird aufgrund seiner guten katalytischen Eigenschaften vielfach in Fahrzeugkatalysatoren eingesetzt, derzeit beträgt die Menge etwa 60 Prozent des europäischen Platin-Handels. Die Wissenschaftler des KIT und ihre Partner stellen am Beispiel eines Diesel-Oxidationskatalysators (DOC) - in dem Kohlenwasserstoffe und Kohlenmonoxid nachverbrannt werden - fest, dass die Partikelgröße und der Oxidationszustand der Platinkomponente während des Betriebs gezielt verändert werden können. Hierbei spielen die Wechselwirkungen zwischen dem Trägermaterial und dem aufgebrachten Edelmetall eine wichtige Rolle. Die Ergebnisse zeichnen das Bild einer höchst dynamischen Katalysatoroberfläche, die äußerst sensibel auf externe Einflüsse wie die Abgaszusammensetzung reagiert. Die Forscher zeigen Wege auf, wie diese Dynamik zur Verbesserung von Katalysatoren genutzt werden kann.

„Das Besondere ist, dass wir die Größe und den Zustand der Edelmetall-Nanopartikel auf der Katalysatoroberfläche einstellen können. Die eingesetzten Methoden ermöglichen es uns, dies unter relevanten und sogar realen Arbeitsbedingungen zu nutzen und direkt die katalytischen Aktivität der Materialien einzustellen“, sagt Andreas Gänzler, wissenschaftlicher Mitarbeiter am Instituts für Technische Chemie und Polymerchemie (ITCP) des KIT und Hauptautor der Studie „Tuning the Structure of Platinum Particles on Ceria In Situ for Enhancing the Catalytic Performance of Exhaust Gas Catalysts“, die in der aktuellen Ausgabe der Fachzeitschrift Angewandte Chemie vorgestellt wird. In der Studie haben die Forscher gezeigt, wie empfindlich der Zustand des Platins auf die Zusammensetzung – etwa das Verhältnis von Kohlenmonoxid und Sauerstoff – und die Temperatur des Abgases reagiert. Schon in heute eingesetzten Systemen zur Abgasnachbehandlung wird der Motorbetrieb gezielt verändert, um die Abgaszusammensetzung einzustellen, etwa zur Regeneration von Rußpartikelfiltern oder NOx-Speicherkatalysatoren. Die Studie zeigt auf, dass auf diese Weise auch die Platin-Aktivkomponente optimal eingestellt werden kann, um die Katalysatoraktivität zu erhöhen und den Bedarf an eingesetztem Edelmetall hierdurch zu reduzieren.

In dem deutsch-französischen Kooperationsprojekt kamen anspruchsvolle Methoden zum Einsatz, mit denen sich die Materialien unter Betriebsbedingungen bei der Arbeit beobachten lassen. Mit Hilfe der Elektronenmikroskopie - Environmental Transmission Electron Microscopy (ETEM) - ließen sich strukturelle Veränderungen auf atomarer Ebene des Materials visualisieren. Die Röntgenabsorptionsspektroskopie an der Synchrotron-Einrichtung SOLEIL im französischen St. Aubin und am Karlsruher Speicherring KARA des KIT ermöglichte es, die Prozesse unter realistischen Abgasbedingungen aufzudecken. „Durch diese Beobachtungen der Katalysatormaterialien unter realen Bedingungen, lassen sich die Erkenntnisse schneller in die Anwendung übertragen“, betont Gänzler.

Aufgrund der gewonnenen Erkenntnisse lässt sich die katalytische Aktivität von Diesel-Oxidationskatalysatoren bei niedriger Temperatur erhöhen. Die Wissenschaftler leiten aus ihren Beobachtungen ein vielversprechendes grundsätzliches Konzept ab, um die Größe und Struktur der Platinpartikel abhängig von der benötigten Katalyseaktivität während des Betriebs gezielt zu steuern. Dies lässt sich unter anderem nutzen, um die Katalysatorleistung beim Kaltstart von Verbrennungsmotoren und während Fahrten im Stadtverkehr deutlich zu verbessern. „Die Struktur der Edelmetall-Nanopartikel lässt sich in der Anwendung zum Beispiel durch kurze Änderungen in der Motorbetriebsweise beeinflussen“, sagt Gänzler.

Die Erkenntnisse der Forscher versprechen aktuelle und künftige, neuartige Katalysatoren zu verbessern und wirtschaftlicher zu machen, denn der Edelmetallgehalt kann dadurch um bis zu 50 Prozent verringert werden. Die Studie, die Professor Jan-Dierk Grunwaldt vom ITCP des KIT „eines der großen Highlights in der Katalysatorforschung“ nennt und in Fachkreisen Resonanz findet, entstand innerhalb der deutsch-französischen Deufrako-Forschungskooperation im Zuge des Projekts „ORCA - Oxidations/Reduktions-Katalysator für Dieselfahrzeuge der nächsten Generation“. Das Bundesministerium für Wirtschaft und Energie stellt für das Vorhaben 960.000 Euro Fördergeld bereit. An der Kollaboration beteiligt sind neben dem KIT das Institut de Recherches sur la Catalyse et l’Environnement de Lyon (IRCELYON), die TU Darmstadt, das Chemieunternehmen Solvay und das Materialtechnologie- und Recyclingunternehmen Umicore AG & Co. KG, Standort Hanau.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

NANOPHOX CS

NANOPHOX CS von Sympatec

Partikelgrößenanalyse im Nanobereich: Hohe Konzentrationen problemlos analysieren

Zuverlässige Ergebnisse ohne aufwändige Probenvorbereitung

Partikelanalysatoren
DynaPro Plate Reader III

DynaPro Plate Reader III von Wyatt Technology

Screening von Biopharmazeutika und anderen Proteinen mit automatisierter dynamischer Lichtstreuung

Hochdurchsatz-DLS/SLS-Messungen von Lead Discovery bis Qualitätskontrolle

Partikelanalysatoren
Eclipse

Eclipse von Wyatt Technology

FFF-MALS System zur Trennung und Charakterisierung von Makromolekülen und Nanopartikeln

Neuestes FFF-MALS-System entwickelt für höchste Benutzerfreundlichkeit, Robustheit und Datenqualität

Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...

Verwandte Inhalte finden Sie in den Themenwelten

Themenwelt Spektroskopie

Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!

50+ Produkte
30+ White Paper
40+ Broschüren
Themenwelt anzeigen
Themenwelt Spektroskopie

Themenwelt Spektroskopie

Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!

50+ Produkte
30+ White Paper
40+ Broschüren