Der kürzeste Laserpuls der Welt
Bewegung von Elektronen während chemischer Reaktionen in Zeitlupe beobachten
ETH Zürich
Um die Dynamik während einer chemischen Reaktion vollständig zu verstehen, müssen Wissenschaftler in der Lage sein, sämtliche Bewegungen von Atomen und Molekülen auf ihren grundlegenden Zeitskalen zu untersuchen. Moleküle rotieren im Pikosekundenbereich (10-12 s), ihre Atome vibrieren im Femtosekundenbereich (10-15 s) und die Elektronen bewegen sich im Bereich von Attosekunden (10-18 s).
Hans Jakob Wörner, Professor für Physikalische Chemie der ETH Zürich, und seiner Gruppe ist es nun gelungen, den bisher kürzesten Laserpuls der Welt mit einer Dauer von nur 43 Attosekunden zu erzeugen. Allgemein ausgedrückt handelt es sich bei diesem Laserpuls sogar um das kürzeste kontrollierte Ereignis, das je von Menschen geschaffen wurde. Die Forscher können dadurch beobachten, wie sich Elektronen innerhalb eines Moleküls verschieben oder wie chemische Bindungen im Detail entstehen.
Übergangszustände schrittweise aufschlüsseln
Ausgehend von einem Infrarotlaser erzeugen die Forscher einen weichen Röntgenlaserpuls mit einer grossen Bandbreite. Dadurch lassen sich verschiedene chemische Elemente wie Phosphor und Schwefel direkt beobachten, indem Elektronen ihrer inneren Schalen angeregt werden. Beide Elemente kommen in Biomolekülen vor, was es nun erlaubt, diese in nie dagewesener Zeitauflösung zu beobachten.
Doch was ist der Vorteil, die Schritte von Reaktionen jetzt mit einer solche hohen Auflösung beobachten zu können? «Je schneller ein Ladungstransfer stattfinden kann, desto effizienter kann eine Reaktion ablaufen», erklärt Hans Jakob Wörner. Das Auge ist zum Beispiel sehr effizient darin, Lichtteilchen, sogenannte Photonen, in Nervensignale umzuwandeln. Im Protein Rhodopsin, einem Sehpigment in der Netzhaut, ist das lichtempfindliche Molekül Retinal so angeordnet, dass sich dessen Struktur bereits durch die Absorption eines einzelnen Photons extrem schnell verändern kann, was wiederum das Sehen – auch im Dämmerlicht – ermöglicht. Eine deutlich langsamere Reaktion würde das Sehen verunmöglichen, weil die Energie des Photons bereits nach wenigen Pikosekunden in Wärme umgewandelt würde.
Die Attosekundenspektroskopie mit der Möglichkeit, Ladungsverschiebungen in Echtzeit zu verfolgen, könnte auch einen Beitrag zur Entwicklung neuartiger Solarzellen mit einer sehr hohen Effizienz leisten, indem man den Prozess der Anregung durch Sonnenlicht bis zur Stromerzeugung Schritt für Schritt verfolgt. Dies könnte helfen, die Molekülstruktur der lichtempfindlichen Elemente in Solarzellen so zu optimieren, dass ein schnellerer und somit effizienterer Ladungstransfer ermöglicht wird.
Optischer Eingriff in ablaufende Reaktionen
Die Attosekunden-Laserspektroskopie eignet sich jedoch nicht nur zur reinen Beobachtung. Mit den ultrakurzen Laserpulsen lassen sich chemische Reaktionen auch direkt beeinflussen. So könnte man den Verlauf einer Reaktion abändern oder gar chemische Bindungen brechen, indem man die Ladungsverschiebung an einer bestimmten Stelle im Molekül per Laserpuls stoppt. Solche gezielten Eingriffe in chemische Reaktionen waren bisher nicht möglich, da die Zeitskala der Elektronenbewegung in Molekülen bisher unerreichbar war.
Wörners Gruppe arbeitet bereits an der nächsten Generation von noch kürzeren Laserpulsen. Mit ihnen lassen sich noch detailreichere Aufnahmen machen und dank eines breiteren Röntgenspektrums lassen sich mehr Elemente als bisher anregen. Es wird bald möglich sein, die Wanderung der Elektronen in komplexeren Molekülen mit einer höheren Zeitauflösung zu verfolgen.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Diese Produkte könnten Sie interessieren
Meistgelesene News
Weitere News von unseren anderen Portalen
Verwandte Inhalte finden Sie in den Themenwelten
Themenwelt Spektroskopie
Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!
Themenwelt Spektroskopie
Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!