Molekularer Nahkampf - Wie Antibiotika die Proteinfabrik in Bakterienzellen blockieren
Ribosomen sind komplexe Makromoleküle, die aus etwa 60 verschiedenen Proteinen und drei bis vier Nukleinsäureketten (ribosomale RNA) aufgebaut sind. Sie sind in jeder Zelle für die Herstellung der lebenswichtigen Proteine verantwortlich, indem sie den genetischen Code, also die Bauanleitung für die Proteine, übersetzen. Ribosomen bestehen aus zwei unabhängigen, unterschiedlich großen Untereinheiten, die verschiedene Funktionen bei der Protein-Biosynthese erfüllen. Die kleine Untereinheit (30S im Falle bakterieller Ribosomen) ist wesentlich für die Dekodierung des genetischen Codes zuständig, während die große Untereinheit (50S) in der so genannten Peptidyltransferase-Reaktion die einzelnen Aminosäuren zu einer langen Aminosäurenkette zusammenfügt, die schließlich zu einem globulären Proteinmolekül verknäuelt wird. Während ihrer Produktion befindet sich die Aminosäurenkette teilweise innerhalb der 50S Untereinheit, in einem etwa 100 Angstrom langen und 15 Angstrom breiten Tunnel, der sie vor enzymatischen Angriffen schützt. Erst 1999 gelang es - nach mehr als zwanzig Jahren intensiver Forschung - die komplizierte Struktur des Ribosoms mit atomarer Auflösung aufzuklären (vgl. PRI B 21/99 (72) "Gefrorene Bilder" erlauben tiefen Blick in Eiweißfabrik der Zelle, vom 7. Dezember 1999).
Die zentrale Rolle des Ribosoms bei der Protein-Biosynthese macht es zugleich zu einem bevorzugten Angriffspunkt vieler Antibiotika (bakterienhemmende oder -tötende Wirkstoffe) und Cytostatika (tumorhemmende Wirkstoffe). Die Details des Wirkmechanismus waren jedoch bisher unbekannt. Chloramphenicol, Clindamycin und Erythromycin sind einige der Antibiotika, die gegen das zu trauriger Popularität gelangte Bacillus anthracis (Anthrax) eingesetzt werden können. Darüber hinaus werden die so genannten Makrolide-Antibiotika zur Bekämpfung einer Vielzahl bakterieller Infektionen verwendet, von Akne bis Syphilis. Anhand biochemischer Daten war bereits bekannt, dass Erythromycin die Peptidyltransferase-Reaktion erst nach der Bildung einer kurzen Aminosäurekette unterbindet. Die Struktur der 50S Untereinheit im Komplex mit Erythromycin sowie mit den zwei anderen Makroliden (Roxithromycin und Clarithromycin) zeigt, dass diese Klasse der Antibiotika den Tunnel der 50S Untereinheit blockiert, durch den alle Proteine hindurch gefädelt werden. Dies führt zu einem vorzeitigen Abbruch der Protein-Synthese.
Meistgelesene News
Weitere News aus dem Ressort Wissenschaft
Diese Produkte könnten Sie interessieren
DynaPro NanoStar II von Wyatt Technology
NanoStar II: DLS und SLS mit Touch-Bedienung
Größe, Partikelkonzentration und mehr für Proteine, Viren und andere Biomoleküle
AZURA Purifier + LH 2.1 von KNAUER
Präparative Flüssigkeitschromatografie - Neue Plattform für mehr Durchsatz
Damit sparen Sie Zeit und verbessern die Reproduzierbarkeit beim Aufreinigen
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für die chemische Industrie, Analytik, Labor und Prozess bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.